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With MIMO and enhanced beamforming features, IEEE 802.11ay is poised to create the next generation of
mmWave WLANs that can provide over 100 Gbps data rate. However, beamforming between densely deployed
APs and clients incurs unacceptable overhead. On the other hand, the absence of up-to-date beamforming
information restricts the diversity gains available throughMIMO and multi-users, reducing the overall network
capacity. This paper presents a novel approach of “coordinated beamforming” (called CoBF) where only a
small subset of APs are selected for beamforming in the 802.11ay mmWave WLANs. Based on the concept of
uncertainty,CoBF predicts the APs whose beamforming information is likely outdated and needs updating. The
proposed approach complements the existing per-link beamforming solutions and extends their effectiveness
from link-level to network-level. Furthermore, CoBF leverages the AP uncertainty to create MU-MIMO groups
through interference-aware scheduling in 802.11ay WLANs. With extensive experimentation and simulations,
we show thatCoBF can significantly reduce beamforming overhead and improve network capacity for 802.11ay
WLANs.
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1 INTRODUCTION
Building upon the current 802.11ad standard [14, 21], the upcoming IEEE 802.11ay [9, 15, 54]
refines the PHY and MAC specifications to enable the next generation of 60 GHz millimeter-wave
(mmWave) WLANs. With the newly introduced support for multiple-input multiple-output (MIMO)
and flexible channelization, 802.11ay can provide up to 100 Gbps of data rate. Such high data
rates will make it possible to support hundreds of densely deployed devices in WLANs and their
bandwidth-hungry applications such as immersive volumetric video streaming, augmented and
virtual reality (AR/VR), robotic manufacturing, etc.
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Scaling the WLAN infrastructure to hundreds of IoT and edge computing devices will require
the dense deployment of access points (APs) in future mmWave WLANs. Apart from the density
necessary for capacity scaling and coverage, such dense deployment of APs can increase the
robustness of mmWave WLANs, where fast AP hand-offs can be used to protect against link
blockages and high attenuation [23, 38, 43]. The dense deployments can also greatly benefit dynamic
AP-user associations to combat interference [17, 46, 48]. In the case of 802.11ay WLANs, densely
deployed APs combined with MIMO, multi-patch antenna arrays, and flexible channelization can
truly realize the spatial and frequency diversity gains [9, 15].
However, dense deployment of APs and clients in mmWave 802.11ay WLANs poses a critical

challenge where the beamforming (BF) between a large number of clients and APs incurs a formi-
dable overhead. Frequent beamforming between APs and clients is necessary to adjust the beams
reacting to blockages and mobility. If up-to-date beamforming information is available, it is possible
to dynamically determine the AP-client association and allocate network resources in an efficient
way. But frequent BF can take a significant amount of time. For example, in 802.11ay, it takes
approximately 5ms to train the downlink transmitter (Tx) and receiver (Rx) sectors of one AP
to all its clients (detailed calculation in Sec. 2). With ten collocated APs, the overhead could be
approximately 50ms which would consume half of the 100ms beacon interval (BI) just for the BF.

Existing solutions proposed in the literature focus on reducing the beamforming overhead per-
link basis. Solutions such as [10–12, 19, 29, 34, 37–39] reduce the overhead by intelligently searching
fewer Tx and Rx sectors for a single AP. However, the BF overhead of the network still increases
with the number of APs [17]. Another type of solution leverages the quasi-optical properties of
mmWave channels [20, 40, 53]. Here, a client’s location and/or orientation is estimated based on
channel state information (CSI) [23] or motion sensors [43]. Then beams calculated from one AP can
be used to derive the beam of the remaining APs to the client without actual BF using techniques
like triangulation [38]. These location-based methods incur additional overhead to localize mobile
clients frequently. Furthermore, the reliance on quasi-optical properties makes the location-based
methods less suitable for deriving Non-line-of-sight (NLoS) reflected paths without extensively
localizing the ambient reflectors [44, 47].

In this paper, we present CoBF, a coordinated beamforming system that addresses the problem
of high beamforming overhead in dense mmWave WLANs. Our key idea is that if we can identify
only a small subset of APs that need to perform BF in each BI, we can reduce the BF overhead
at the network level while ensuring that the BF information is up-to-date. To identify the subset
of APs, we introduce a concept of uncertainty which is the probability that an AP’s beams to its
clients have changed significantly since its last BF. We develop a prediction model where APs
which performed BF recently can predict the uncertainty of other APs. Then the APs with high
uncertainty can be selected for BF. In addition, we use the network-level uncertainty to dynamically
choose the number of APs that need to perform BF in each BI, allowing CoBF to adapt to the
network dynamics seamlessly. Furthermore, the uncertainty value is leveraged for interference
management, multi-user multiple input, multiple output (MU-MIMO) grouping, and scheduling.
To the best of our knowledge, our solution is the first to reduce the beamforming overhead

from a network-level perspective. A salient advantage of the proposed coordinated beamforming
is that it is conceptually orthogonal to the link-level BF schemes that are widely studied and can
be used in conjunction with them to reduce the BF overhead further. Besides, our scheme is
location-agnostic and can be readily integrated into off-the-shelf devices without any MAC or
PHY protocol modifications. It makes our coordinated BF scheme applicable to different types
of mmWave networks, such as 802.11ad/ay WLANs and 5G New Radio (NR) cellular networks.
However, developing the coordinated BF scheme requires us to address two critical challenges:
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(1) How to model uncertainty and use it to select APs for BF? We address this by developing
an uncertainty prediction model. The model enables us to capture the BF information change
observed (across different sectors and patches) for one AP which recently performed BF and use it
to predict the potential BF information change for other APs. The prediction model can identify
the probability of BF information change (i.e., whether an AP’s last known beams will still hold
true or not). The uncertainty prediction models are developed using a small amount of observed
BF data, which typically incorporate the underlying indoor multi-path, stationary blockages, and
user mobility. We propose a solution where these models for predicting uncertainty can be trained
using an offline (perform warwalking and train the models offline) or online (collecting training
data while predicting the APs to BF) approach. Using the predicted uncertainty, the AP selection
procedure is performed in run-time to find a small subset of APs that need to update their BF
information for the network efficiently.

(2) How to manage interference and schedule MU-MIMO with limited BF information? Since not all
APs perform BF in each BI, we exploit the AP uncertainty to develop an SINR (Signal to Interference
and Noise Ratio) model by considering both intra- and inter-group interference between APs
and clients. The BF information and the uncertainty are utilized to form MU-MIMO groups with
the objective of improving network throughput. Lastly, the observed network performance after
scheduling is leveraged to determine the number of BF APs in the next BI, creating a closed-loop
system of BF AP selection and scheduling.

In this work, we make the following contributions: (1) We present a first-of-its-kind coordinated
beamforming scheme (called CoBF) that can reduce the BF overhead in dense 802.11ay WLANs by
judiciously selecting a subset of APs to do BF. Through modeling the uncertainty of BF information,
we present a framework that can be used for AP selection and for determining the number of APs
to beamform based on network-level uncertainty. (2) We develop an uncertainty-aware scheduler
that considers the uncertainty of APs’ BF information to select APs and links during scheduling
and resource allocation in 802.11ay WLANs. We formulate the uncertainty-based SINR model and
propose a greedy scheduler that performs MU-MIMO grouping. (3) We implement and evaluate
CoBF using extensive real-world experiments and large-scale trace-driven simulations. First, we
use commodity 802.11ad devices enhanced with Rx beamforming implementation to evaluate the
uncertainty prediction model and the effectiveness of coordinated BF. Second, we use the Remcom
InSite [32] mmWave channel simulator to evaluate CoBF in two large, densely deployed WLAN
scenarios. Our evaluation shows that:
• The coordinated beamforming improves the network throughput by 30.8% compared to 802.11ad
BF with a 71% reduction in BF overhead in our 802.11ad testbed with 4 APs. Furthermore, the
mean difference in AP-client SNR (Signal to Noise Ratio) is observed to be less than 1 dB for the
sector selected by our coordinated BF scheme and the scheme where all APs perform BF.

• CoBFwith MU-MIMO can achieve up to 5.5 times higher average throughput and 4.2 times lesser
BF overhead with limited control latency compared to the default 802.11ay BF scheme where all
APs perform beamforming in each beacon interval.

• The warwalking efforts required to build the uncertainty model are reasonably small. For example,
approximately 120 warwalking steps are required in a room of 198𝑚2 area in the experiment
scenario. Our results also show that carefully updating the training data using an online approach
is feasible, eliminating the need for the time-consuming warwalking process. The online model
achieves a comparable performance in terms of uncertainty prediction.

• We also evaluate the control latency of CoBF and find that our uncertainty based beamforming
and centralized scheduling incur much smaller latency overhead compared to the time taken by
default exhaustive beamforming of 802.11ad/ay.
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• CoBF can be combined with existing link-level beamforming schemes to achieve 7.9%, 9.3%, and
15.9% network throughput increment with CoBF + compressive sensing [34], CoBF + UbiG [38]
and CoBF + MUTE [10] respectively compared to CoBF + 802.11ay link-level BF.

2 MOTIVATION AND SYSTEM OVERVIEW
2.1 802.11ay Overview

BHI  DTI

SP2 SP3 CBAP1 SP4BTI  A-BFT ATI ...

EDMG Beacon
Sector ID=0

EDMG Beacon
Sector ID=1

EDMG Beacon
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(a)  IEEE 802.11ay Beacon Interval (BI)

(b) IEEE 802.11ay Beamforming Training (BFT) with TRN-R frame  
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sector 
ID =1

Rx 
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ID =...

Rx 
sector 

ID =S-1

...

Qusai-omni

SP1

Fig. 1. 802.11ay enhanced beacon frame & beamforming

In 802.11ay, enhanced direc-
tional multi-gigabit (EDMG) sta-
tions (STAs) get access to the
medium within beacon inter-
vals (BI) as shown in Fig. 1(a).
Similar to 802.11ad, a BI in-
cludes the beacon header inter-
val (BHI) and the data transmis-
sion interval (DTI). The BHI is
further divided into three sub-
intervals: beacon transmission
interval (BTI), where APs trans-
mit beacons to train the down-
link sectors; association beam-
forming training (A-BFT), where
STAs perform uplink sector training in a slotted CSMA manner; announcement transmission in-
terval (ATI) in which the AP exchanges management frames with STAs. In addition, the APs and
STAs exchange data frames in DTI based on beamforming information (e.g., Tx and Rx antenna
sectors from BHI) either using contention-based access periods (CBAPs) or time-divided service
periods (SPs).
Enhanced beacon frames. 802.11ay [9, 15, 54] proposes an enhancement to the beacon frames
(which we refer to as enhanced beacon frames) where the beacon frames can be used not only
for downlink Tx beamforming (I-TXSS) but also downlink Rx beamforming (I-RXSS). Here, the
AP transmits a beacon frame in all of its sectors one by one, where each of the beacon frames
has training fields (TRN-R) appended to it (see Fig. 1(b)). An STA receives the original part of the
beacon frame using the quasi-omni sector while sweeping through all its receive sectors when
receiving the appended TRN-R frames. The STAs then provide feedback about observed sectors and
their SNR to the AP during the following A-BFT. In CoBF, we use these enhanced beacon frames to
train downlink Tx and Rx sectors from APs to clients.
MU-MIMO. Downlink MU-MIMO is another promising feature of 802.11ay, in which up to eight
concurrent spatial streams could be enabled to realize up to 100 Gbps data rate. 802.11ay MU-MIMO
BF process includes two phases. The SISO phase is similar to the BF training process but extended
for sectors of all antennas on the AP. In the MIMO phase, multiple streams are simultaneously
probed over different sectors for a subset of selected sectors and users based on SISO phase results.

2.2 Problem, Motivation and Our Approach
2.2.1 BF overhead in dense mmWave WLANs. With the enhanced beacon frames in 802.11ay
WLANs, the time taken to complete the downlink BF for one AP is𝑇𝐴𝑃 = |𝑆𝑇 | (𝑡𝑏𝑒𝑎𝑐𝑜𝑛 + |𝑆𝑅 |𝑡𝑇𝑅𝑁−𝑅 +
𝑡𝐵𝐼𝐹𝑆 ) , where |𝑆𝑇 | and |𝑆𝑅 | are the number of sectors on AP and client, respectively. 𝑡𝑏𝑒𝑎𝑐𝑜𝑛 is the
time to transmit one beacon frame (without the following TRN-R), 𝑡𝑇𝑅𝑁−𝑅 is the time to transmit
one TRN-R training sequence, and 𝑡𝐵𝐼𝐹𝑆 is the inter-frame spacing between the consecutive beacon
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Fig. 2. Sector change and SNR change for Route 1.
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Fig. 3. Sector change and SNR change for Route 2.

frames. Based on 802.11ay specifications [15], 𝑡𝑏𝑒𝑎𝑐𝑜𝑛 = 14.5𝜇𝑠 per sector (with beacon frame
size of 50 bytes and transmission rate of 27.5 Mbps(Modulation and Coding Scheme(MCS) 0)),
𝑡𝑇𝑅𝑁−𝑅 = 2.2𝜇𝑠/8.7𝜇𝑠 with 64/256 length Golay sequence for one TRN unit and 𝑡𝐵𝐼𝐹𝑆 varies from
1𝜇𝑠 to 18𝜇𝑠 . As an example, the BF overhead with 64 Tx sectors and 16 Rx sectors could be between
3.2𝑚𝑠 to 9.9𝑚𝑠 for one AP. Furthermore, the overhead linearly increases with the number of APs.
In a dense network of 10 APs, 32𝑚𝑠 to 99𝑚𝑠 could be wasted in BF out of the 100𝑚𝑠 of beacon
interval, significantly reducing the useful time for data communication. The link-level BF schemes
can reduce the per-link overhead, but the total overhead still increases with the number of APs.

2.2.2 Observations in Multi-AP BF. We first conduct a measurement study to understand the BF
patterns among different APs in a mmWave WLAN. The observations then form the basis of our
coordinated BF scheme. We consider a densely deployedWLANwith many APs and a client moving
around on different routes, as shown in Fig. 4a. We measure the BF information, including the Tx
sector index and their corresponding SNR for different APs for different routes. These routes are
selected based on typical moving patterns of users. For instance, in Route 1, the client enters the
room, goes to a desk at the corner, and goes back to the door, while Route 2 represents a typical
route taken by the client when she leaves the building. In our experiments, the APs [2] and clients
[1] both are equipped with 802.11ad radios. We modified the 802.11ad driver [45] to implement the
Rx BF and to extract the BF information to user space. In Figs. 2 and 3, we show the downlink APs’
highest SNR Tx sector index (selected by the AP) and their corresponding SNR change for each
subsequent step as the client moves on Routes 1 and 2. Here, each step is approximately 1 m. We
make two important observations that motivate our system design:
(1) Not all APs Tx sector frequently changes, so not all APs need to perform BF frequently. As

shown in Figs. 2a and 3a, when the client moves towards AP 6 on Route 1 (first nine steps) and
towards AP 0 in Route 2 (first ten steps), their best Tx sector does not change until the client turns
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Fig. 4. (a) Network layout and client routes used in testbed experiments. (b) Correlation of SNR change
between APs by accumulating all instances. (c) Room layout and client route used in channel simulation. (d)

Correlation of AoA between different pairs of APs by accumulating all instances.

around. This, albeit, is not true for all APs. The best Tx sector for AP 4 and AP 11 on Route 1
changes frequently, as shown in Fig. 2c and 2d due to their relative position and the user mobility.
This longer beam coherence for some APs means that not all APs need to perform BF in every
beacon interval. They can be triggered to do BF only when their BF information is expected to
change significantly. However, the question is how to predict when an AP’s BF information has
changed significantly to a client without actually performing BF.

(2) APs can be correlated in terms of the change in their BF information. In Figs. 2 and 3, we plot
the (absolute) SNR change of every subsequent measurement step and observe similar patterns of
SNR change between different APs when the client moves at various different locations or makes
particular movements. For instance, the SNR of AP 6 (Fig. 2a) and AP 9 (Fig. 2b) changed by more
than 4 dB in Route 1 at step 11 when the client turns around. Similarly, the SNR of AP 0 (Fig.
3a) and AP 3 (Fig. 3d) also changed together in Route 2 at step 18. These similar patterns of SNR
change show that the APs can have correlations in terms of their BF information to clients. Fig.4b
shows the correlation matrix of SNR change between APs by accumulating all instances among 12
different routes. When two APs’ SNR change pattern has high similarities with each other, they
have a high correlation value.

Before developing a model that can leverage this correlation, we first try to understand the fun-
damental underlying reason behind the existence of the correlation. The pairwise SNR correlation
(which we later use to formally define uncertainty) emerges from the correlation between the
angle of arrival/departure (AoA/AoD) of paths from the APs to a client. As the client moves, the
AoA/AoD of LoS and NLoS paths from APs to the client changes accordingly. However, depending
on the mobility of the client, location and orientation of APs, and most importantly blockages and
reflections in the room, different pairs of APs demonstrate different AoA/AoD correlations. This in
turn results in different SNR correlation and uncertainty dependencies between the pair of APs.
To validate this, we carry out channel propagation simulations in the Remcom Wireless Insite

simulator [32]. We simulate the 3D environment and AP positions shown in Fig. 4c with a client
walking on the shown route. At each step, we calculate the AoA of the path with the highest
signal strength between the client and all APs. We then calculate the Pearson’s correlation of
the AoA between different AP pairs for the collected data as shown in Fig. 4d. We observe that
when a pair of APs can provide a direct LoS path to the client, their AoA correlation is high. To
better understand this, we divide the route into three segments and analyze the segment-specific
correlations. When the client is walking on Segment 1, both AP 0 and AP 1 can provide an LoS path
to it. Since this path’s AoA changes with client mobility, the AoA correlation is observed to be high
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(0.81 for Segment 1 and 0.7 as in Fig. 4d for the entire route). For Segment 2, AP 10 can provide an
LoS path to the client while AP 14 can provide a non-LoS path only due to a wall blockage. In this
case, their AoA correlation is still relatively high (0.53 for Segment 2 and 0.5 as in Fig. 4d for the
entire route) as the LoS path depends on client mobility only while the NLoS path also depends
on the position of reflecting objects and blockages. Lastly, for Segment 3, both AP 9 and AP 10
can only provide a non-LoS path to the client, resulting in a lower correlation of 0.22. Since the
reflected path depends on available reflecting surfaces and the position of blockages along with
client mobility, the correlation reduces. The overall correlation between APs 9 and 10 is still high
(0.6 in Fig. 4d.) given that they have LoS paths to many parts of the entire route shown in Fig. 4c.
This way, the correlation in how different AoA/AoD changes for different pairs of APs translate to
different SNR change and SNR correlation.

The SNR correlation is a coarse representation of if two APs’ BF information for a client changes
similarly or not. We need a fine-grained model that can predict the significant BF information change
for one AP given the BF information change for another AP for various instances of client location and
mobility. Our proposed CoBF scheme reduces the BF overhead by judiciously selecting a small
subset of APs based on how important it is for those APs to perform the BF. This importance is
formally modeled as “uncertainty” which is the probability that an AP’s BF information (SNR of
different sectors) to its clients has changed significantly since its last BF. We mine a small amount
of observed data for different APs’ BF information change to build a prediction model. Furthermore,
we use the uncertainty of BF information from the prediction model for AP grouping and sector
selection during MU-MIMO scheduling to further improve the network throughput.

2.3 CoBF Overview
Fig. 5 shows a high-level overview of CoBF. We assume a centrally-managed enterprise WLAN
scenario where APs are connected to a controller through a high-speed backhaul. CoBF consists of
three important modules: (i) the uncertainty prediction module, (ii) the BF AP selection module, and
(iii) uncertainty-aware scheduler with MU-MIMO grouping. CoBF executes the following steps:

(1) At the start of a BI, a small subset of selected APs perform BF using enhanced beacon frames
to train their downlink Tx and Rx sectors of all antennas on the AP and all clients. The updated BF
information is input to the uncertainty prediction module. The module consists of AP uncertainty
prediction models which can be trained online or offline and then looked up during the run-time.
Based on the BF information of the APs that performed the BF, the module predicts the uncertainty
(i.e., the probability of significant change in BF information) for other APs.

(2) The current BF information and the predicted AP uncertainty values are input to the
uncertainty-aware scheduler. The scheduler uses this information to calculate SINR with intra-
/inter- interference in a probabilistic manner to perform Tx and Rx sector selection, MU-MIMO
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grouping, and scheduling. The calculated schedule is then executed by the APs during the data
transmission interval.

(3) The AP uncertainty is also input to the BF AP selection module, which ranks the APs based on
predicted uncertainty. Based on the feedback ratio of observed throughput to expected throughput
and the predicted uncertainty, a subset of APs (more if the ratio is small, less otherwise) is selected
from the ranked list for BF in the next BI. The process is repeated every BI creating a closed-loop,
feedback-based coordinated BF, and scheduling system for 802.11ay WLANs.

3 BEAMFORMING AP SELECTION
3.1 AP Uncertainty
Intuitively, the uncertainty of an AP is the probability that its last known channel and BF information
to its clients have changed significantly. If an AP’s uncertainty has increased substantially, it could
be a potential candidate for BF in the next BI. A key challenge here is how we can predict the
uncertainty of an AP. We claim that APs in mmWave WLANs exhibit correlation that can enable
us to estimate the uncertainty of one AP based on the BF information change observed by another
AP. Fig. 6(a) demonstrates this concept. Here, 𝐴𝑃𝑎 performed BF in BI 𝑡 and 𝑡 − 𝑙 . Similarly, 𝐴𝑃𝑒
performed BF in BI 𝑡 −𝑛. Given the change observed by 𝐴𝑃𝑎 at BI 𝑡 compared to BI 𝑡 − 𝑙 for a client
𝑐𝑘 , the link uncertainty of 𝐴𝑃𝑒 to 𝑐𝑘 is the probability that its last known BF information (SNR of
Tx and Rx sectors) from BI 𝑡 − 𝑛 has changed significantly. Put more simply, given an AP’s observed
channel change (BF information change) to a client, the link uncertainty of a different AP to that client
is the probability that its last known channel has changed significantly. The uncertainty of an AP is the
cumulative link uncertainty for all its clients. In mmWave WLANs, APs can exhibit varying levels of
correlation depending on their relative positions, distance, ambient reflectors, and blockages in the
environment. As we show in the next subsection, the correlation information can be captured in
the pairwise uncertainty prediction model.
Uncertainty vs. channel estimation. The uncertainty does not predict the actual change of
channel (and the channel itself by that means) but instead tries to capture the likelihood that the
channel has changed significantly or not. Predicting the change in the channel through observations
of different antennae or frequencies is a different problem that has been studied recently in [5, 41].

3.2 Uncertainty Prediction Model
We first define uncertainty formally before describing how we build the uncertainty
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tainty
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Data collection & 
Clustering
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Fig. 6. (a) Example showing uncertainty and AP
selection. (b) BF AP selection overview.

prediction model. We then discuss how the model
is used for BF AP selection.
The channel quality observed when an 𝐴𝑃𝑖 ∈ 𝑀

performs BF with a client 𝑐𝑘 ∈ 𝑁 in a BI 𝑡 can be
represented using a |𝑆𝑇 | × |𝑆𝑅 | matrix 𝐷 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡
where 𝑑𝑘𝑖 ∈ 𝐷 is the observed SNR value, 𝑆𝑇 is the
set of Tx sectors on 𝐴𝑃𝑖 , 𝑆𝑅 is the set of Rx sec-
tors on client 𝑐𝑘 and 𝑠𝑝 ∈ 𝑆𝑇 , 𝑠𝑞 ∈ 𝑆𝑅 . If 𝐴𝑃𝑖 per-
formed BF in BI 𝑡 − 𝑙 and is also selected for BF
in BI 𝑡 , let 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 be the matrix of element-
wise absolute difference between the two matrices
𝐷 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡 and 𝐷 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡−𝑙 , and Δ(𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 =

Σ |𝑆𝑇 |
𝑠𝑝=1Σ

|𝑆𝑅 |
𝑠𝑞=1𝛿 [𝑠𝑝 , 𝑠𝑞] is the total observed change in

SNR between the BF at two BIs. The link uncertainty
between an 𝐴𝑃𝑖 and 𝑐𝑘 at BI 𝑡 is the probability that
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Δ(𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 > 𝜅𝑇𝐻 where 𝜅𝑇𝐻 is a predetermined threshold indicating a significant change. Fur-
thermore, based on the pairwise prediction models that we build, the link uncertainty between 𝐴𝑃 𝑗
(which did BF at 𝑡 − 𝑛) and 𝑐𝑘 in BI 𝑡 + 1 can be predicted by 𝐴𝑃𝑖 which performed BF at 𝑡 and 𝑡 − 𝑙 .
Specifically, given an observed change in SNR 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 for input 𝐴𝑃𝑖 , the link uncertainty for
output 𝐴𝑃 𝑗 and 𝑐𝑘 in the next BI 𝑡 + 1 can be predicted as the probability that Δ(𝐴𝑃 𝑗 , 𝑐𝑘 )𝑡+1𝑡−𝑛 > 𝜅𝑇𝐻
(conditioned on the observed SNR change for 𝐴𝑃𝑖 ).

Our uncertainty prediction model is constructed in a pairwise manner, where the input AP is the
one where channel change is observed and the output AP is the one for which the uncertainty is
being predicted. We evaluate the performance of other types of models (multiple AP correlation
scheme) in Section 5. Our models are developed as shown in Fig. 6(b).
(1) Data collection. First, during the data collection phase, a client walks around in the WLAN
area collecting SNR values for Tx and Rx sectors with different APs in their range. CoBF does
not require the client to follow any specific mobility pattern. As we demonstrate in Section 5, a
moderate amount of warwalking effort is adequate for gathering all APs’ BF information offline
in practical scenarios. Alternatively, the uncertainty prediction models can also be trained in
an online manner where the BF data collected by clients from carefully chosen APs is used for
training while predicting the next subset of APs to perform BF. As we show in Section 5, such
online learning can not only reduce/eliminate the warwalking efforts but can achieve a comparable
network performance.
(2) Data curation. The collected data is traversed to calculate observed pairs of input and output
AP changes using a sliding time window𝑊 . We refer to𝑊 as the beam relevance window as shown
in Fig.6(a). It is used to specify the last𝑊 BIs when calculating the BF information change for APs.
BF performed in BIs older than𝑊 are considered outdated and are disregarded.

For every pair of beamforming instances for 𝐴𝑃𝑖 (say at BI 𝑡 and 𝑡 − 𝑙 ) within the last𝑊 BIs, we
calculate the BF information change 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 . Similarly, for every pair of beamforming instances
for𝐴𝑃 𝑗 at 𝐵𝐼 𝑡 and 𝑡−𝑛within the last𝑊 BIs, we calculate the total beamforming information change
Δ(𝐴𝑃 𝑗 , 𝑐𝑘 )𝑡𝑡−𝑛 . The tuples 𝑒 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) = {𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 ,Δ(𝐴𝑃 𝑗 , 𝑐𝑘 )

𝑡
𝑡−𝑛} are added to 𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) to

create a pairwise set using moving clients 𝑐𝑘 . We normalize the change using the time difference
between BIs. The process is repeated while traversing the entire collected data to create pairwise
sets 𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) consisting of tuples of 𝑒 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) calculated as above.
(3) Clustering and uncertainty estimation. Our next step is to cluster the pairwise AP set
𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) based on the similarity in input 𝐴𝑃𝑖 ’s observed beamforming change (i.e., 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ))
to calculate the probability of significant change for the output 𝐴𝑃 𝑗 (i.e., uncertainty). We use
clustering where an instance 𝑒 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) = {𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ),Δ(𝐴𝑃 𝑗 , 𝑐𝑘 )} is randomly selected from set
𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) and all instances in 𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) that are within a predetermined Euclidean distance
from 𝑒’s input 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ) are grouped to form a cluster. Note that 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ) is a matrix of size
|𝑆𝑇 | × |𝑆𝑅 | which can be reduced to |𝑆𝑇 | by selecting the best Rx sector for each Tx sector. The
process is repeated until all instances in 𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) are clustered. For each cluster, we find the
uncertainty of the output 𝐴𝑃 𝑗 by calculating the fraction of instances that have total beamforming
change higher than a predetermined threshold (i.e., Δ(𝐴𝑃 𝑗 , 𝑐𝑘 ) > 𝜅𝑇𝐻 ). Each cluster is represented by
𝑓 (𝑣𝑛, 𝑝𝑛) ∈ 𝐹 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) where 𝑣𝑛 is the centroid of the cluster and 𝑝𝑛 is the calculated uncertainty.
The process is repeated for all pairs of APs to create their clusters (i.e., set 𝐹 ) and uncertainty.

Here, we make two important remarks. First, we note that the clusters formed after the clustering
process do not simply depend on locations. This is because due to different orientations and
variations in multipath at different locations, it is possible that two different locations away from
each other end up having similar BF information changes and are clustered together. Second, a
relatively small amount of training data is sufficient because the model focuses on learning the
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uncertainty probability through clustering which is coarser than predicting the actual channel
change (e.g., predicting how much the SNR of each sector between an AP and client has changed).
We also compare the offline model with online models by dynamically increasing the training data
in the evaluation.

3.3 AP selection Process
During the runtime, the uncertainty prediction model developed in the last section is used for
selecting a subset of APs to do BF. The objective here is to identify the APs that potentially have
high (predicted) uncertainty. This objective is captured by accumulating link uncertainty among all
clients for that AP with 𝜆𝐴𝑃 𝑗

= (∑ |𝑁 |
𝑘=1 𝑝

𝑐𝑘
𝐴𝑃 𝑗

)/|𝑁 | where 𝑝 is the link uncertainty. After calculating
the 𝜆 for all APs, the top 𝐾 APs are selected to do BF in the next BI. Here, 𝐾 ∝ ℎ𝑜/ℎ𝑒 depends on
the throughput feedback. When the observed network performance ℎ𝑜 is close to the expected
throughput ℎ𝑒 (calculated from the scheduler introduced in Sec. 4) in the current BI, it can be
inferred that the BF information is relatively up-to-date, and fewer APs are selected for BF in the
next BI. On the other hand, when the gap between the observed and expected network throughput
increases, the AP selection module aggressively selects more APs for BF, reducing the overall
uncertainty in the network. The process of this beamforming AP selection is described below:
(1) After BF in the current BI 𝑡 , find the APs that did not do BF in last X BIs (i.e., 𝐴𝑃 𝑗 ∉ 𝐴𝑡

𝑡−X), and
mark them as output APs. Here, X is referred as the beam coherence window (as shown in Fig. 6a)
where APs that performed BF within X do not have to repeat their BF again in the next BI as
their observed BF information is likely to be unchanged (i.e., beam coherence). 𝐴𝑡

𝑡−X is the set of
APs that did BF during BI 𝑡 − X to BI 𝑡 . Then for each of these output APs, find the input 𝐴𝑃𝑖 (s)
in set 𝐴𝑡

𝑡−X using the maximum correlation value as shown in Fig.4b from the training model.
(2) Calculate link uncertainty 𝑝𝑐𝑘

𝐴𝑃 𝑗
between 𝐴𝑃 𝑗 and each client 𝑐𝑘 by finding the nearest cluster

𝑓 (𝑣𝑛, 𝑝𝑛) ∈ 𝐹 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) from the observed change 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ) (smallest distance between centroid
𝑣𝑛 and 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )) and use its uncertainty 𝑝𝑛 or weighted uncertainty from all input APs as the
link uncertainty, i.e., 𝑝𝑐𝑘

𝐴𝑃 𝑗
= 𝑝𝑛 . The idea here is to match the current observed BF change of the

input AP to a client with the warwalking clusters, find the cluster with similar change, and use the
probability of significant change for that cluster as the uncertainty of the output AP to the client.

(3) Rank all output APs based on the score 𝜆. Select top 𝐾 = ( |𝑀 | − |𝐴𝑡
𝑡−𝑥 |) × ℎ𝑜/ℎ𝑒 APs to do BF

for next BI. Goto step 1 for the next BI.
It is worth noting that we select the input AP that has the highest correlation with the output

AP and use it to predict the uncertainty for the output AP in (1) above. The intuition behind this
pairwise model is that APs with high correlation can better predict the uncertainty values for
each other. An alternative model could consider all input APs to predict the uncertainty of the
output AP. However, this requires a large number of models (compared to the pairwise models)
where every combination of subsets of input and output APs should be modeled, resulting in very
high computational and lookup costs. In Section 5, we compare our pairwise approach with a
multiple AP correlation scheme (Fig. 11d) where instead of selecting the highest correlation AP for
uncertainty prediction, the predicted uncertainty value of all input APs are weighted with their
correlation with the output AP and the weighted mean of uncertainty is used.

4 UNCERTAINTY-AWARE SCHEDULING
As shown in Fig. 5, the APs selected in the previous section will conduct BF at the beginning of the
BI. After the BF, the uncertainty values are updated before the scheduler can schedule links and
initiate data transmission. In CoBF, we build an SINR model to capture interference based on the
BF information and their uncertainty. In this section, we first introduce our uncertainty-based SINR
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modeling and then focus on the centralized scheduling with the MU-MIMO scheduler. Specifically,
CoBF uses the uncertainties to guide the MU-MIMO scheduler. Here, instead of selecting “uncertain”
APs as in the BF, the scheduler selects “certain” APs in scheduling to improve network throughput.

4.1 Interference with Uncertainty
Scheduling in 802.11ay WLANs requires accounting for three types of interference: (i) Path/sector
diversity: The use of different Tx and Rx sectors can change link interference relationship. (ii)
User diversity: With the use of MU-MIMO, different groups of clients can be formed for each AP,
resulting in varying levels of intra-group interference. Similarly, in a WLAN, there can be inter-group
interference between the client groups of different APs. (iii) Channel diversity: The use of different
channels changes the adjacent and non-adjacent channel interference (ACI and NACI). The above-
mentioned interference can be captured using an SINR model, however, a critical challenge here
is that such a model assumes that complete BF information is available at the scheduler before
the link interference modeling and scheduling can be carried out. As stated earlier, getting the
complete BF information for all APs and clients incurs unacceptable measurement overhead. To
address this problem, we integrate the uncertainty of BF information directly into the interference
model and scheduling problem.
Expanding our previous notations, set 𝐷 represents the BF information at the controller. Each

entry in 𝐷 is 𝑑𝑘𝑖 representing the SNR between 𝐴𝑃𝑖 and client 𝑐𝑘 on channel 𝑏 with Tx sector 𝑠𝑝
𝑖𝑘

and Rx sector 𝑠𝑞
𝑖𝑘
. Here, 𝑏 ∈ 𝐵 where 𝐵 is the set of available channels with different channel index

(8 channels in 802.11ay). Because the current BF information might not be up-to-date, we use the
uncertainty captured by our prediction model described in last section to estimate the SNR value.
Therefore, the SNR between 𝐴𝑃𝑖 and 𝑐𝑘 can be calculated as

𝑆 (𝐴𝑃𝑖 , 𝑐𝑘 ) = 𝑑𝑘𝑖 (1 − 𝑝
𝑐𝑘
𝐴𝑃𝑖

) (1)

, where (1 − 𝑝𝑐𝑘
𝐴𝑃𝑖

) is the probability that the last known beams from 𝐴𝑃𝑖 to 𝑐𝑘 have not changed
significantly (i.e., certainty) and can still provide the last known SNR.

The intra-group interference from the concurrent transmissions 𝑑𝑘 ′
𝑖 using another RF chain from

the same 𝐴𝑃𝑖 to a different client 𝑐𝑘 ′ ≠ 𝑐𝑘 can be calculated as the summation of signals from the
transmit sector 𝑠𝑝

′

𝑖𝑘 ′ of 𝑑𝑘
′

𝑖 but for the same receive sector 𝑠𝑞
𝑖𝑘
in 𝑑𝑘𝑖 . The intra-group interference

can be represented as

𝐼𝑖𝑛𝑡𝑟𝑎 (𝐴𝑃𝑖 , 𝑐𝑘 ) =
∑︁
𝑘 ′≠𝑘

𝑑𝑘
′

𝑖 (1 − 𝑝𝑐𝑘′
𝐴𝑃𝑖

) (2)

On the other hand, in dense mmWave WLAN, the APs forming different groups can interfere with
each other. So the inter-group interference from transmissions of other APs for the same receive
sector of the same link at 𝑐𝑘 can be calculated as

𝐼𝑖𝑛𝑡𝑒𝑟 (𝐴𝑃𝑖 , 𝑐𝑘 ) =
∑︁
𝑖′≠𝑖

∑︁
𝑘 ′′≠𝑘

𝑑𝑘
′′

𝑖′ (1 − 𝑝𝑐𝑘′′
𝐴𝑃𝑖′

)I𝑏,𝑏′ (3)

The parameter I𝑏,𝑏′ represents the interference factor between channels 𝑏 and 𝑏′. We calculate the
factor for 802.11ay channels [15] using the spectrum mask model presented in [30]. Given different
APs could be dynamically assigned different channels, the factor affects inter-group interference.
The SINR of the link can be calculated as

𝑆𝐼𝑁𝑅(𝐴𝑃𝑖 , 𝑐𝑘 ) =
𝑆 (𝐴𝑃𝑖 , 𝑐𝑘 )

𝑁0 + 𝐼𝑖𝑛𝑡𝑟𝑎 (𝐴𝑃𝑖 , 𝑐𝑘 ) + 𝐼𝑖𝑛𝑡𝑒𝑟 (𝐴𝑃𝑖 , 𝑐𝑘 )
(4)
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The advantage of our SINR model is that it directly operates on sector-level SNR where a sector
can cover the LoS path, a NLoS path or both (multi-path). So, interference between different links
can be calculated regardless of whether they operate on LoS and/or reflected paths.

4.2 Uncertainty-aware Scheduling
In CoBFMU-MIMO scheduling, our objective is to maximize the total sum-rate of all potential links
in the network by finding an optimal MU-MIMO groups set with suitable Tx sectors, Rx sectors and
channels for each link. The complexity of this problem is𝑂 ( |𝑀 | |𝑁 |C |𝑀 | ) whereC = ( |𝑆𝑇 | |𝑆𝑅 |)𝑁𝑅𝐹 |𝐵 |
is the search space within the group of one AP. |𝑀 |, |𝑁 |, |𝑆𝑇 |, |𝑆𝑅 |, 𝑁𝑅𝐹 , |𝐵 | are the total number of
APs, clients, Tx/Rx sectors, per AP RF chains, and number of channels respectively. Due to this
high complexity, we present next a heuristic based approach that leverages the AP uncertainty.
AP searching order. Our heuristic-based scheduler greedily picks APs with low link uncertainty
and high signal strength (together they yield high expected throughput) to clients. Firstly, CoBF
creates an AP searching order for scheduling. The scheduler creates a sorted list𝑈 where the APs
are sorted based on

∑ |𝑁 |
𝑘=1 𝛼

𝑐𝑘
𝐴𝑃𝑖

× (1 − 𝑝𝑐𝑘
𝐴𝑃𝑖

) where 𝛼𝑐𝑘
𝐴𝑃𝑖

is the link quality factor calculated based on
updated 𝐷 and (1 − 𝑝𝑐𝑘

𝐴𝑃𝑖
) is the updated certainty values after APs complete their BF.

MU-MIMO grouping and scheduling. For each AP in the sorted list 𝑈 , CoBF first forms its
MU-MIMO group. The grouping process greedily adds clients with high demand to a group. For
each newly added client, it iteratively searches for alternate Tx and Rx sectors for all clients in the
group until the sum rate of SINR of links in the group cannot be improved. The client is added to
the group only if the SINR of all links in the group are higher than the demand after its joining.
As stated earlier, our intra-group interference calculation accounts for link uncertainty. Since the
scheduler uses the SINR interference model, the interference between links in a MU-MIMO group
is directly calculated based on the SISO BF information (SNR of different Tx and Rx sectors) and
uncertainty. The scheduler then goes over the 802.11ay spectrum to allocate channels to each
group and tries to pack multiple groups in the same scheduling slot while considering inter-group
interference. In this process, the scheduler incrementally adds links of a newly formed group to the
existing schedule. A link is added if adding it does not violate the SINR requirement of existing
schedule. If no link in the new group can be scheduled, next adjacent channel is used to reduce
the inter-group interference. The process is repeated for every AP’s group in order. The APs carry
out the transmission based on the schedule and get the observed throughput ℎ𝑜 . The expected
throughput ℎ𝑒 is calculated as the summation of scheduled links’ demand. The ratio ℎ𝑜/ℎ𝑒 then
becomes input to the uncertainty-based AP selection for the next BI.

The complexity of the scheduling procedure is 𝑂 ( |𝑀 | (G + 8( |𝑀 |𝑁𝑅𝐹 )2)) where 8 is the number
of channels in 802.11ay, and ( |𝑀 |𝑁𝑅𝐹 ) is the maximum available number of links in the MU-MIMO
WLAN. Here, G = |𝑁 | |𝑆𝑇 | |𝑆𝑅 |𝜇 is the complexity of the grouping algorithm where 𝜇 is the number
of iterations (less than 10 in our case). Therefore, our greedy scheduler reduces the complexity
from exponential to polynomial.

5 EVALUATION
We evaluate CoBF using (i) an 802.11ad WLAN testbed with a modified driver and (ii) large-scale
trace-driven 802.11ay simulations where traces are collected through real channel measurements
and Remcom mmWave channel simulator. The idea of coordinated BF presented in this work is
general and can be applied to 802.11ay as well as 802.11ad WLANs. Since no 802.11ay devices are
currently commercially available, we first use our 802.11ad testbed to evaluate CoBF. We then use
measurement and Remcom channel traces to simulate 802.11ay WLANs for a large-scale evaluation
with MU-MIMO.
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Testbed setup and implementation. We develop a mmWave WLAN testbed to evaluate the

8 Antenna Patches 

47m

25m

Scenario 3: Corridor (CR)

OfficeAP Route

AT SC

CR

Fig. 7. mmWave testbed experiment and trace-driven simulation
scenarios.

feasibility of coordinated BF and col-
lect measurement channel traces for
802.11ay WLAN simulations. The
testbed consists of 12 802.11ad APs
deployed in a university atrium with
a lobby (referred as AT with size
18𝑚 × 11𝑚 as shown in Fig. 4a and
7). We use Airfide [2] 802.11ad radios
as the APs. The Airfide devices use
Qualcomm QCA9500 802.11ad chip
with QCA6335 baseband chip and
QCA6310 RF front-end chip. Each AP
is equipped with 8 phased array an-
tennas (Fig. 7) where each array is
made of 32 antenna elements. We use
Acer TravelMate-648 laptops [1] as the stations. The laptops use the same Qualcomm chipset but
are equipped with only one phased array antenna (32 elements as shown in [25]). Both devices
use the open-source wil6210 driver [45] to implement 802.11ad MAC and PHY. We use a 64-sector
codebook on the Airfide APs and a 36-sector codebook on the laptops. The 3dB beamwidth of the
Airfide codebook sectors is approximately 40◦ with sidelobes (shown in [52]). The sectors of Acer
laptop antenna also have non-trivial sidelobes [25, 34].

We modify the wil6210 driver to achieve the following functionality: 1) implement receive BF (not
implemented by default in 802.11ad devices) with the same codebook of transmit BF; 2) set a specific
Tx and Rx sector of the codebook for a link; 3) set the number, order, and index of sectors used in
the Tx/Rx BF; 4) extract channel information including per sector SNR, MCS for any combination
of Tx and Rx sector. With these functionalities, we utilize both Tx and Rx BF and implement our
network beamforming scheme on the testbed.
Prediction model implementation. To build the prediction model and learn the uncertainty
between APs, we place a client at different locations and collect the enhanced Tx/Rx BF data. At each
location, the client collects the SNR for all AP Tx sectors and all client Rx sectors (64 × 36) for all
APs in the range at that location. The data is then stitched together to be used by different walking
traces in training. We run both offline and online approaches based on these data to evaluate the
CoBF. The data is collected for 250 different locations in AT but as we show later, a relatively small
number of locations are sufficient to achieve an accurate uncertainty prediction model.

5.1 Micro-benchmarking Uncertainty Prediction Model
To evaluate the effectiveness of uncertainty prediction between different APs, we first calculate the
pairwise BF information change Δ with our experimental data for different APs, followed by the
validation of how well our uncertainty prediction model can predict these BF information change.

In Figs. 8a and 8b, we show the CDF of normalized total BF information change (Δ) and uncertainty
of clusters (Δ > 𝜅𝑇𝐻 , 𝜅𝑇𝐻 is set to 70th percentile of all Δ) for 5 different output APs based on the
same input AP in Scenario AT (shown in Fig. 4a and Fig. 7). When AP-6 is the input AP, Fig. 8a
shows that AP-2 does not have any BF information change. That is expected given the room layout
which results in large physical separation and blockage between the two APs. Other APs observe a
range of BF information change values given the change of AP-6. AP-1 has close to 20% instances
where no change is observed in relation to AP-6’s change. This is also evident from the uncertainty
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Fig. 8. Micro-benchmarking uncertainty prediction model on 802.11ad testbed.

of clusters. Here, given a change in observed BF information in AP-6, there is a higher probability
that AP-3’s BF changes significantly compared to AP-1. This is in agreement with the AT layout
shown in Fig. 4a which shows that our model can capture the effects of the underlying layout of
the room without knowing the exact room map. In addition, in the same large open space and with
the same distance to AP-6, AP-5 observes much higher BF information change and uncertainty of
cluster compared to AP-8. It is because the uncertainty model does not just depend on the relative
location of APs, but also depends on the room layout and the user mobility in the room, which can
also be captured in our prediction model through the training process.

Fig. 8c shows the validity of our prediction model. It shows how well our uncertainty estimation
model captures the BF SNR change. Here, we include all samples of estimated uncertainty in our
experimental data and compare that with BF SNR change observed by the APs. We find that our
estimated uncertainty accurately represents the BF information change and we can use it to guide
the BF AP selection process.

Next, we further show that our uncertainty prediction model is not sensitive to small changes in
the environment. Fig.8d shows the CDF of normalized BF information change among two pairs of
correlated APs (AP6-AP9 and AP4-AP11) for two different sets of warwalking data collected for the
same route but with different furniture layouts (desk and chair positions). The CDF difference for
the two sets of warwalking data is observed to be 8.5% on average. This can be attributed to the
fact that our model focuses on learning uncertainty relationships through clustering (coarser than
precise channel change prediction), making it tolerant to small changes in the environment.

5.2 Micro-benchmarking Coordinated Beamforming
To evaluate the feasibility and effectiveness of coordinated BF, we conduct experiments with 4 APs
(AP6, AP9 AP4 and AP11) in AT. We first run the warwalking process to develop the AP uncertainty
models offline. We then run the BF AP selection process in real time on the mobile client. Here, the
client also acts as a central controller connecting to all 4 APs over a 5 GHz 802.11ac control channel.
The control channel is used to communicate which AP(s) should do BF and which AP should send
downlink data to the client. Then the selected AP sends Iperf data to the client. Here, AP utilizes
the default 802.11ad CSMA MAC for channel access. We note that CoBF can be implemented on a
central controller that connects with all APs over a wired backhaul. The BF AP selection process is
triggered by a drop in SNR at the client, activating a set of APs to perform BF depending on the
BF AP selection scheme. We note that this micro-benchmarking aims to show the effectiveness of
our coordinated BF model without considering the uncertainty-aware scheduling and MU-MIMO
which are evaluated in the next subsection.
Comparison. We evaluate our coordinated beamforming scheme with different client walking
traces in AT and compare it with three other schemes- (1) 11ad-FixedAP: A client is always
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Fig. 9. Micro-benchmarking coordinated beamforming on 802.11ad testbed.

connected with one fixed AP and performs BF with only that AP. This is the default 802.11ad
implementation without any central controller. (2) 11ad-AllAP: Here, all APs perform BF and the
client receives data from the best AP with the highest Tx-Rx sector SNR. The choice of the AP
and Tx-Rx sectors change as the client moves around in the room corresponding to the channel
changes. (3) 11ad-OracleBF: The client receives data from the highest SNR AP at any time similar
to the 11ad-AllAP scheme. However, we assume that the highest SNR AP is known to the client in
advance. This means that the client does not perform BF with all APs, but instead only performs
BF with the highest SNR AP to determine Tx and Rx sectors. Since knowing the best AP in advance
is difficult in practice, the 11ad-OracleBF scheme throughput is calculated based on the 11ad-AllAP
scheme implementation with BF overhead of only the best AP. In contrast, our 11ad-CoBF scheme
selects only a subset of APs to perform BF based on the uncertainty model. Then the AP with the
highest SNR based on available BF information is selected to send Iperf downlink data to the client.
SNR difference. We first try to understand the following: given that our CoBF scheme limits the
number of APs doing BF, how well can it maintain the link SNR? Fig. 9a shows the SNR difference
between CoBF scheme and 11ad-AllAP SNR (where all APs do BF) for all APs. We find that the
median SNR difference for all 4 APs is below 0.5 dB, and the 75 percentile is below 1.2 dB. This
shows that our CoBF can achieve comparable SNR as 11ad-AllAP as our BF AP selection process
can always select the APs with significant SNR change to do the BF.
Throughput and BF overhead. The throughput of different schemes is shown in Fig. 9b.
To evaluate the packet level BF overhead of different schemes, we use an 802.11ad laptop in
monitor/sniffer mode to capture the packets in the air and calculate the overhead of BF packets.
The overhead is shown in Fig. 9c and 9d. We find that CoBF scheme achieves higher throughput
than the 11ad-FixedAP and 11ad-AllAP schemes. 11ad-FixedAP performs the worst in terms of
throughput as it cannot exploit the gains achievable through connecting with other potentially
higher SNR APs. 11ad-AllAP can always select the highest SNR AP but at the cost of very high
BF overhead (4 BF APs at all times). In comparison, 11ad-CoBF utilizes the uncertainty model
in conjunction with throughput feedback to trigger only a small number of APs to do BF (1.23
on average). This reduces the BF overhead (amount of airtime used for BF) by 71% compared to
11ad-AllAP as shown in Fig. 9c, resulting in 30.8% higher throughput. 11ad-OracleBF achieves the
highest throughput as it can select the highest SNR AP while incurring the BF overhead of only 1
AP at any point in time. As shown in Fig. 9d, there are times when 11ad-CoBF uses all 4 APs to do
BF or none of the APs to do BF depending on the current state of BF uncertainty. So, CoBF not
only reduces the number of APs doing BF but also carefully selects the BF APs such that the client
can consistently achieve high SNR while ensuring low BF overhead.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 31. Publication date: June 2023.



31:16 Ding Zhang, Panneer Selvam Santhalingam, Parth Pathak, and Zizhan Zheng

5.3 Large-scale Evaluation
5.3.1 Trace-driven simulations. To evaluate CoBF at scale, we collect two types of channel traces:
(1) Channel traces using testbed. We use our modified 802.11ad driver to collect SNR of all
Tx and Rx sectors for 12 Airfide APs in AT scenario (Fig. 4a and Fig. 7). The channel traces are
collected for 250 different locations at a granularity of 0.8m.
(2) Channel traces using Remcom InSite. We create two more enterprise WLAN scenarios
(Fig. 4c and Fig. 7): (i) SC: a large university student center (49m × 48m) with few stationary
blockages, and (ii) CR: a corridor (25m × 47m) with a substantial number of blockages (e.g., offices,
labs, etc.) in the middle (Fig. 7). We create 3D models of the SC and CR rooms and import them
into Remcom InSite [32]. Here, 16 APs are deployed in SC, and 15 APs are deployed in CR. Each AP
is deployed at 2m height and is equipped with eight antenna array patches (groups of 2 pointing in
4 different directions 90◦ apart). Each patch has 8 × 8 element arrangement. The eight patches are
also used to enable 8 RF chains and spatial streams in 802.11ay MU-MIMO. Each client is equipped
with 1 4 × 4 patches, pointing in one of the four different directions, and has one RF chain. The
antenna gain pattern of the Tx antenna array has a 3dB beamwidth of approximately 12◦ to 15◦.
The Remcom Wireless Insite utilizes an X3D ray model [31] which can provide exact path

calculations and detailed multi-path estimation for MIMO simulations. We collect the channel
matrix 𝐻 for every point at 0.1m distance granularity in the SC and CR spaces. We use AWS
servers with 4 GPUs, 32 CPUs, and 244 GB of memory to run the Remcom simulations for over
29 days to collect accurate channel traces. We then use the 𝐻 matrices to calculate the enhanced
beamforming information of APs (64 sectors) and clients (32 sectors). The received signal is
calculated as 𝐷 = 𝐹𝐻

𝑘𝑞
𝐻𝐹𝑖𝑝𝐹𝐵𝐵𝑋 + 𝐹𝐻

𝑘𝑞
𝑁0 where 𝐹𝑘𝑞, 𝐹𝑖𝑝 ∈ F represent antenna weight vectors of

Tx analog sector 𝑠𝑝
𝑖𝑘
and Rx analog sector 𝑠𝑞

𝑖𝑘
, 𝐹𝐵𝐵 is the baseband precoder, 𝑋 is the transmitted

signal, and 𝐹𝐻 is the conjugate transpose of 𝐹 .
To implement realistic mobility of users, we identify typical walking routes (moving between

offices, office to/from building doors/elevators, etc.). We vary the number of clients up to 25 in AT
and up to 100 in SC and CR. Note that we select different routes for warwalking and evaluation. In
terms of traffic, 90% of the traffic demand is uniformly generated from MCS1 to MCS8, and 10% of
the traffic is uniformly generated from MCS9 to MCS21 as per the 802.11ay MCS. Following the
same methodology in [10], we assume multiple virtual RF chains are co-located at the AP using all
antenna patches. We also use the 802.11ay SNR-MCS mapping to estimate the network throughput
as in [10, 17, 39, 48].

5.3.2 Comparison. We evaluate two variants of CoBF and compare them with other schemes.
(1) CoBF-Uncertainty: This is the main scheme of CoBF, which uses the uncertainty prediction
model and uncertainty-aware scheduling with throughput feedback for AP selection.
(2) CoBF-Random: This scheme uses the throughput feedback to determine the number of APs
to beamform in the next BI, but instead of selecting these APs using uncertainty (as in CoBF-
uncertainty), the subset of APs are selected randomly. This enables us to evaluate in isolation how
well uncertainty-based AP selection performs.
(3) Oracle-BF: In this scheme, we assume that the AP selection module knows the subset of APs
that will be eventually scheduled in each BI. Hence, the APs that are to be scheduled but have not
performed BF in the last X BIs are selected for BF in this scheme. Given that the Oracle scheme has
complete knowledge about the (future) scheduling in each BI, it finds the exact subset of APs to
beamform. We note that the Oracle-BF scheme still uses the scheduler like the other schemes, but
it incurs the least BF overhead for a given schedule.
(4) 802.11ay-BF: This scheme assumes that all APs perform BF in each BI as in 802.11ay.
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Fig. 10. Throughput comparison for different schemes with varying numbers of clients and RF chains.

5.3.3 Throughput gains due to AP selection. Figs. 10a, 10b and 10c show the average throughput
per BI for different schemes as we increase the number of clients. The network throughput initially
increases with the number of clients and then saturates at a point for all three scenarios. This is
expected given that beyond a certain point, the spatial and frequency diversity gains saturate, and
spatial reuse cannot be further increased. The saturation occurs with fewer clients in AT compared
to SC and CR. This is because, in the AT experiment scenario, we use real 802.11ad devices that
have larger beamwidth and non-trivial sidelobes compared to Remcom cases. This, in conjunction
with the smaller area of the AT room, increases the inter and intra-group interference much faster
and reduces the achievable spatial reuse.

In terms of different schemes, we observe that our scheme CoBF-uncertainty achieves 5.5 times
higher throughput compared to 802.11ay and is close to 90% of the Oracle-BF scheme in SC and
CR scenarios. In AT, the gain is 1.8 times higher than 802.11ay and 77% of the Oracle-BF, mostly
due to the larger interference footprint of the scenario. A similar result is observed in Fig. 10d in
the SC scenario with 100 clients when increasing the number of RF chains from 1 to 8. More RF
chains increase the throughput for all schemes as expected, and as before CoBF schemes perform
significantly better than 802.11ay.
Based on the throughput results, we make three observations. First, the gains of two CoBF

schemes can be attributed to the reduction in BF overhead as far fewer APs are performing BF in
CoBF schemes compared to the 802.11ay scheme, where all APs perform BF in each BI. Second,
CoBF-uncertainty’s better performance (average gain 70.3%) compared to CoBF-random in all three
scenarios demonstrates that merely selecting fewer APs is not sufficient; the choice of APs also
plays a critical role. Third, the difference between the CoBF-uncertainty and the Oracle-BF scheme
can be attributed to the fact that the Oracle-BF does a better job at selecting the APs that will be
eventually scheduled in that BI since it knows the future scheduling as the comparison purpose.
BF overhead. Fig. 11a compares the BF overhead of different schemes in terms of the number of
APs doing BF per BI using mean, 75th, and 95th percentiles. First, as we expect, the BF overhead is
high for 802.11ay (12 APs in AT), given that every AP performs BF in each BI. In comparison, CoBF-
uncertainty has 4.2 times fewer APs performing BF on average. This shows that the uncertainty-
based AP selection reduces the number of BF APs and their overhead. Looking at 75th and 95th
percentile values, we find that there are some cases where many more APs (5 to 9 out of 12)
perform BF in CoBF. Such cases are the result of the simultaneous change of orientation of many
clients while walking, resulting in outdated BF information for many AP (i.e., high uncertainty).
Even in such cases, CoBF-uncertainty provides valuable savings in terms of overhead compared to
802.11ay BF. In the case of SC and CR, CoBF-uncertainty also yields 5.1 times and 4.8 times lower
overhead than 802.11ay-BF on average. CoBF-random achieves a bit higher overhead compared
with CoBF-uncertainty, and the throughput performance loss is due to the poor choice of APs.
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Fig. 11. (a) BF overhead, (b) Different number of selected APs, (c) AP selection similarity (d) Pairwise
uncertainty correlation (Max-InputAP) vs. multiple AP correlation (Multi-InputAPs)

Impact of number of APs (𝐾). As stated earlier, our CoBF selects top 𝐾 APs to perform
beamforming after the APs are ranked based on their predicted uncertainty. Since 𝐾 is a crucial
parameter that affects the performance of the system, we select𝐾 based on the throughput feedback
of the previous beacon interval. Specifically, 𝐾 ∝ ℎ𝑜/ℎ𝑒 where ℎ𝑜 and ℎ𝑒 are the observed and
expected network throughput in the previous BI, respectively. This means that in the current
BI, fewer APs are selected if the observed network throughput closely matches the expected
value. However, if the observed throughput differs significantly from the expected value, the BF
information of APs is likely outdated, and hence, more APs are selected in the next BI for BF.

In Fig. 11b, we evaluate how well the throughput feedback works in terms of selecting 𝐾 . To do
so, we compare the CoBFwith fixed values of 𝐾 where a predetermined number of APs are selected
in each BI without considering the dynamic throughput feedback. We also compare CoBF with the
Oracle solution where the value of 𝐾 that achieves the highest network throughput is assumed to
be known in advance. As we observe in Fig. 11b, the fixed value of 𝐾 performs poorly compared
to CoBF. This is because a lower value of 𝐾 reduces the BF overhead but results in outdated BF
information in absence of throughput feedback. On the other hand, a higher value of𝐾 can keep the
BF information relatively more up-to-date albeit at a cost of high BF overhead with unnecessary BF
for many APs. In comparison, CoBF is able to better adapt to the changing network performance
and use it for predicting 𝐾 . This is evident from CoBF performance being close to the oracle.
Pairwise uncertainty correlation vs. multiple AP correlation. In our current AP selection
process, a pairwise AP uncertainty correlation model is used where the input AP with the highest
correlation is selected for the output AP. We compare this with multiple AP correlation scheme
where a weighted average uncertainty value of all input APs is used instead. This scheme gives
more weight to the predicted uncertainty values when the correlation is high. Fig. 11d shows the
throughput increment of both schemes with different amounts of warwalking data. We find that
Max-InputAP performs better than the Multi-InputAP scheme when the warwalking training data is
less. Specifically, before 71 steps, the Max-InputAP achieves a 24.13% higher throughput increment
compared to Multi-InputAP. This is because, with less training data, some of the calculated AP
correlations are less accurate and can lead to incorrect uncertainty prediction. However, as more
training data is added to the model, the Multi-InputAP scheme performs better (4.39% more
throughput increment) with the calculated correlations being more representative of reality. We
note that the throughput increment with multiple APs is not significantly high and theMax-InputAP
can still perform reasonably well with different amounts of training data.
AP selection similarity. To take a better look at the accuracy of AP selection compared to
the Oracle-BF scheme, we define a new metric 𝑆𝐼 as |𝐴𝑃𝑂 ∩𝐴𝑃𝜖

𝐶𝑜𝐵𝐹
|/|𝐴𝑃𝑂 |, where 𝐴𝑃𝑂 ∩𝐴𝑃𝜖

𝐶𝑜𝐵𝐹

captures the intersection of the set of APs selected for BF by the Oracle-BF scheme and CoBF
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Fig. 12. (a) Effectiveness of uncertainty-aware scheduling (b) Fairness evaluation for different numbers of
clients, (c) Various latencies involved in CoBF and their average values.

scheme within 𝜖 BIs. In Fig. 11c, AP similarity 𝑆𝐼 represents the percentage of similarity between
BF AP set 𝐴𝑃𝑂 for Oracle-BF and set 𝐴𝑃𝐶𝑜𝐵𝐹 for CoBF scheme within 𝜖 BIs. The similarity for
CoBF-uncertainty increases as 𝜖 increases. More importantly,CoBF-uncertainty consistently selects
more APs that are also selected by the Oracle-BF scheme compared to the CoBF-random, signifying
the effectiveness of the uncertainty-based AP selection. With 3 BIs, CoBF-uncertainty achieves
67% BF AP similarity as the Oracle-BF scheme.

5.3.4 Gains due to uncertainty-aware scheduling. Our uncertainty-aware scheduler picks APs
with low uncertainty with a higher priority. We compare the uncertainty-aware scheduler with
another scheduler that uses the same greedy steps but does not consider AP uncertainty while
scheduling. Fig. 12a shows the network throughput with the increasing number of clients for the
two schedulers in the experimental scenario AT. We observe that the uncertainty-aware scheduler
provides a significant gain of 59.8% compared to the uncertainty-unaware scheduler.
We also evaluate the fairness of client throughput using Jain’s fairness index. The results are

shown in Fig. 12b for varying numbers of clients with CoBF-uncertainty in the AT scenario. We
find that as the number of clients increases, the index decreases from 1 to 0.83 and then converges
with the further increase in the number of clients. The convergence occurs around the same point
when the network throughput also starts saturating, shown in Fig. 10a. It indicates that even when
BF APs are selected based on their aggregate uncertainty towards clients, this selection strategy
does not adversely affect the performance of a single or few clients. CoBF is capable of updating
the beams towards all clients reasonably well to avoid any fairness issues or saturation.

5.3.5 Control Latency. Since our CoBF scheme relies on a central controller, periodic communica-
tion between the APs and the controller is necessary. Such a communication incurs an additional
time overhead that should not be too large such that it overshadows the benefits of CoBF’s intel-
ligent BF. Fig. 12c shows a detailed description of various latencies involved in CoBF and their
mean values. Here, we assume that the controller is connected to the APs over a wired (Ethernet)
backhaul as commonly implemented in most enterprise WiFi networks. As shown in Fig. 12c, there
are two major central controller-related latencies: scheduling latency (𝜏1) and BF AP selection
latency (𝜏2)
Scheduling latency (𝜏1):. When (K) APs complete their BF, they report their BF results to the
central controller. We refer to this latency as 𝜏𝑎1 . The controller then calculates the schedule based
on our interference and scheduling algorithm which takes 𝜏𝑏1 . Lastly, the controller sends out the
schedule to APs and let’s assume this communication takes 𝜏𝑐1 . We find that 𝜏𝑎1 is only 1.06 ms and
our BF updates are 160 bytes. Furthermore, the BF process of one AP can proceed in parallel with
another AP’s BF update to the controller. This means that the 𝜏𝑎1 is essentially sending one packet
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from the last BF AP to the controller. 𝜏𝑏1 takes on average 7.32 ms on a 32-core desktop based on
our simulations. When the uncertainty is low (fewer updated BF, fewer changes to interference), 𝜏𝑏1
can be as low as 2.11 ms. Lastly, the controller can send out the calculated schedule as a broadcast
packet to all APs which takes 1.28 ms on average.
BF AP selection latency (𝜏2):. After the data transmission, the APs report their observed
throughput to the controller. Considering a separate packet from each AP to the controller, the
latency for doing so (𝜏𝑎2 ) is approximately 0.91 ms. The AP then uses this information to select
the number of APs (𝐾 ) that should perform BF in the next BI. We note that here only the number
of APs needs to be calculated since the actual order list of APs based on their uncertainty can be
calculated at the controller when APs perform data transmission. The process of doing so takes a
negligible amount of time, i.e., 𝜏𝑏2 = 0.21 ms. Lastly, a broadcast packet can be used by the controller
to notify the APs about which APs should perform BF in the next BI where 𝜏𝑐2 = 1.25 ms.
Considering the two control latencies, our CoBF scheme incurs an overhead of 7 to 12 ms. As

we discussed in Sec. 2.2.1, the time overhead for BF for one AP can be up to 8-10 ms in practice.
Compared with the exhaustive BF of 802.11ad/ay, CoBF significantly reduces the number of APs
performing the BF. As shown earlier, in the AT scenario, 802.11ad/ay requires all 12 APs to perform
BF while CoBF requires only 3 APs to perform BF on average in each BI. This results in a huge
reduction (approximately 71 ms) in BF overhead for CoBF while the added control latency is
much smaller in comparison. Hence, CoBF can reduce the BF overhead without incurring any
considerable control overhead.

5.3.6 Different amount of warwalking data. We now evaluate how much warwalking data is
sufficient to build the uncertainty prediction model. Figs. 13a, 13b, and 13c show the percent-
age throughput increment as more and more warwalking instances are added, starting with no
warwalking data (i.e., random selection). Our warwalking scheme is referred as “Offline-All” in
Figs. 13a, 13b, and 13c. Here, one warwalking instance is when a client performs beamforming with
all APs in its range at a discrete point in physical space. We separately build a new uncertainty
model as new warwalking data is added and rerun the throughput measurement.
Fig. 13a shows the throughput gain with the number of steps considered in warwalking for

the experimental AT scenario. Here, walking for 30 steps achieves 23.7% throughput increment,
and convergence is observed after 120 steps with 32.4% throughput increment. Fig. 13b shows the
results for the SC scenario where the throughput increases sharply even with a small number of
warwalking instances. In the SC scenario, the highest gain (87.5%) is observed with 150 discrete
walking steps in the room. We note that the throughput increment after 50 steps is marginal. In
the case of the CR scenario (Fig. 13c), the highest gain (52.9%) is observed with 210 steps in the
room. The lower throughput gain in AT compared to SC and CR can be attributed to the coarser
granularity of warwalking data collection in experiments compared to simulations. The CR scenario
requires more amount of warwalking because of substantially more stationary blockages between
APs. Overall, in all three scenarios, we observe that building the CoBF uncertainty model requires
a reasonable amount of warwalking data which can be fairly easily collected in practice. Note that
carefully choosing the locations and mobility routes could further reduce the warwalking time.

5.3.7 Offline warwalking vs. online learning. While the overhead of offline learning is small but
non-negligible, we now discuss how our scheme can be adapted to online learning settings. To do
so, we develop two alternate schemes and compare them with our "Offline-All" scheme. We refer
to these two online learning schemes as “Online-Random” and “Online-CoBF”. We note that in
our Offline-All scheme, a client performs BF with all APs at each step while moving around. This
BF information is used for training the uncertainty prediction model after the offline warwalking
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Fig. 13. (a-c) The performance of CoBF uncertainty prediction model with different amount warwalking data
and its comparison with online learning alternatives (d) CoBF is orthogonal to the link-level BF schemes.

phase. In comparison, the online schemes leverage the data from a client that is moving around
while simultaneously performing BF based on a given scheme and collecting the data to train the
model. In the Online-Random scheme, the client only performs BF with randomly selected APs at
each step. In the Online-CoBF scheme, the APs with which the client performs BF are not selected
randomly but are instead selected using our CoBF scheme. In both online schemes, the uncertainty
prediction model is retrained at every step with additional BF information being available.
Figs. 13a, 13b, and 13c show the performance of the online scheme as more and more training

data is added compared with the offline scheme with different amount of warwalking data used for
training. We find that the online models converge in a similar manner (albeit slowly) compared
to adding more warwalking data to the Offline-All model. The performance gap between the
Offline-All and Online-Random is significant as the client randomly selects APs to perform BF in
the Online-Random model compared to all APs in the Offline-All model. In the CR scenario, the
gap in performance is observed to be significant even after as many as 250 walking steps. On the
other hand, the Online-CoBF model performs relatively better compared to the Online-Random
model and achieves a convergence much similar to the Offline-All model. This shows that when
APs for which BF information is used in training are selected carefully (as in the CoBF scheme),
the resultant BF information can be very useful in training the uncertainty prediction models
even with a limited amount of data. This means that it is indeed feasible to convert our offline
warwalking-based model training into an alternative online learning scheme which can in fact
eliminate the laborious warwalking process. However, such a model does require a careful selection
of APs for BF to collect the training data as selecting them randomly cannot guarantee convergence
in many practical scenarios.

5.3.8 Augmenting CoBF with link-level beamforming schemes. CoBF reduces the BF overhead by
reducing the number of APs that beamform in each BI. However, it assumes that when an AP
performs the BF, it searches all Tx/Rx sectors. CoBF can be combined with other existing link-level
BF schemes to further reduce the overhead. To show how our coordinated beamforming can be
augmented with link-level beamforming, we use CoBF in conjunction with three link-level BF
schemes: (i) compressive searching (CS) [34] which reduces the complexity to find the best Tx/Rx
sector to logarithmic order by randomly probing a limited number of BF sectors; (ii) UbiG [38]
which reduces the complexity to a constant order using Power Delay Profile (PDP) to estimate all
paths; (iii) MUTE [10] which firstly uses PDP to select a candidate group of sectors with maximum
spatial separation and then uses zero-forcing to reduce the interference in the MIMO group.

Fig. 13d shows that the throughput can be increased by 7.9%, 9.3%, and 15.9% with 64 Tx sectors
and 32 Rx sectors in our SC scenario with 8 RF chains when CoBF-uncertainty scheme is combined
with CS, UbiG, and MUTE, respectively. The gains in the case of CS and UbiG can be attributed to
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their lower complexity in link-level sector searching (𝑂 (𝑃𝑙𝑜𝑔(𝑆)) for CS and 4𝑃 for UbiG, where 𝑃
is the number of mmWave paths and 𝑆 is the number of sectors). In the case of MUTE, we combine
it within each MU-MIMO group selected by CoBF to reduce the number of searched sectors, along
with zero-forcing to reduce intra-group interference assuming that we can get the full H matrix
for all clients at the APs. We also observe a considerable variation in MUTE in Fig. 13d because
zero-forcing can reduce the transmitted signal quality below the client requirement in some cases,
which can impair the total throughput. In conclusion, as per the recent trend of increasing the
number of Tx and Rx antennas and sectors, the link-level beamforming can be seamlessly combined
with CoBF to reduce the BF overhead and increase the achievable throughput.

6 RELATEDWORK
mmWave beamforming. The problem of reducing beamforming overhead has been studied
extensively in recent years (survey in [18]). Hierarchical searching [3, 13, 39] by iteratively probing
from wider to narrower beamwidth sectors can reduce the overhead to 𝑙𝑜𝑔(𝑆) but needs additional
overhead of feedback. Compressive searching [19, 26–29, 34] can reduce the BF overhead to
𝑂 (𝑃𝑙𝑜𝑔(𝑆)), in which 𝑃 is the underlying number of paths of the mmWave link, without additional
feedback overhead. Authors in [12] designed a multi-armed probing framework with the complexity
of 𝑂 (𝑃𝑙𝑜𝑔(𝑆)). Besides, multi-armed patterns are utilized to improve reliability [16] and support
multicast [51]. Authors in [38] reduced the BF overhead to 4𝑃 using the signal’s power delay
profile. Authors in [25] use 4𝑆 probing to get the CSI information on COTS devices and use that
for adaptive beamforming. Hybrid beamforming based MIMO for mmWave network has been
studied in early works [3, 4, 8, 35, 36]. In [11], authors proposed an approach that decouples hybrid
beamforming from user selection. In [10], the authors propose to use the power delay profile to
predict the intrinsic path skeleton first and then select a subset of candidate sectors for the group
with maximum path separation. As we showed in Sec. 5, CoBF can be augmented with the above-
mentioned link-level and MIMO BF schemes to further reduce the total overhead. Recently, authors
in [42, 52] proposed a mmWave MIMO software radio platform that can be used for implementing
hybrid beamforming in CoBF.
mmWaveWLANs. In mmWave WLAN, interference is modeled in the form of conflict graphs in
[17, 46, 48], and different schemes [6, 33, 49] were proposed to reduce the link interference. These
prior works assume that complete BF information for all links is available before calculating link
interference, while CoBF relies on only a subset of APs that performed BF and incorporates BF
uncertainty directly in the interference calculation.

Given the BF information of a subset of APs, mmWave localization through WLAN APs [7, 22–
24], triangulation [38] or sensor-based prediction of client’s mobility [43] can be used to calculate
LoS paths for other APs, which could also reduce the beamforming overhead. However, they would
perform poorly in predicting reflected paths without extensive measurement-based profiling of
reflectors in indoor space [44], especially in case of dynamic blockages. Compared to this, CoBF
takes a different approach where the number of APs that perform BF is intelligently reduced to
decrease the BF overhead. In a recent work [50], authors showed the feasibility of networked
beamforming to reduce the BF overhead. In comparison, CoBF presents a holistic framework for
uncertainty prediction based on both offline and online data, a closed-loop AP selection, and an
uncertainty-aware MU-MIMO grouping and scheduling with limited BF information. Our work
also performs extensive experimental implementation and evaluation in three different scenarios
to show the effectiveness of coordinated beamforming.
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7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
In this work, we presented a novel scheme of coordinated beamforming to reduce the beamforming
overhead in dense mmWave 802.11ay WLANs. We introduced CoBF, a closed-loop, feedback-based
system that carefully selects a small subset of APs to perform beamforming in each BI based on BF
uncertainty. Our numerical evaluation showed that CoBF can provide a substantial reduction in
BF overhead and improvements in network throughput compared to default 802.11ay. The work
can be extended in the future to address some of its current limitations. CoBF can be adopted in
a distributed setting where the uncertainty evaluation and scheduling can be performed by the
APs directly without the need for a central controller. Such a distributed scheduler can also include
uplink traffic from clients to the APs. Finally, more complex machine learning models such as
neural networks can be utilized to further improve the online learning of uncertainty relationships.
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