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Abstract
As we move towards a future of connected and autonomous
vehicles, high-speed and low-latency connectivity between
vehicles is becoming increasingly important. This paper in-
vestigates enabling high data rate mmWave links in vehicle-
to-vehicle (V2V) scenarios using street view images. We find
that mmWave V2V links in urban settings suffer from fre-
quent and prolonged blockages, resulting in unreliable con-
nection and high beamforming overhead. Our work proposes
mmSV, a system that creates 3D reflection profiles from street
view images to assist vehicles in finding mmWave reflections
from the environment in real-time. mmSV consists of two
key components: material identification which identifies ma-
terials from street view images to determine their reflectivity
and create 3D reflection map, and environment-driven ray-
tracing and beamsearching which finds a high-SNR beam
using predicted 3D material maps. Our extensive experimen-
tal results on the mmWave testbed show that mmSV can
provide highly reliable V2V mmWave connectivity with low
beamforming overhead.
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1 Introduction
The number of connected and autonomous vehicles is ex-
pected to surpass 300 million by 2035 [6] in the United States
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with over 5 million fully autonomous vehicles [5]. These
vehicles are expected to be equipped with a range of sensors
including RGB and infrared cameras, LiDARs, automotive
radars, ultrasonic sensors, GPS, IMUs, and more. A limita-
tion in using these sensing modalities is that they have a
limited sensing range with largely line-of-sight operations
in the presence of occlusions [59]. Various safety, fuel effi-
ciency, and infotainment-related applications require cars
to exchange their sensing information with other vehicles
in their surrounding. For example, sharing raw or partially
processed sensor data (e.g., LiDAR feed) with other vehicles
can enable them to enhance their sensing range. It can help a
vehicle create a “see-through” or “bird’s eye” view of the en-
vironment. However, this necessitates high-capacity connec-
tivity, surpassing current standards (e.g., 802.11p/DSRC [1],
V2V LTE [15]). 3GPP 5GNR V2X [4] envisions applications
like platooning, extended sensors, advanced driving, and
remote driving, requiring data rates exceeding 1 Gbps. Al-
though 802.11ax can provide high data rates, it requires wider
bonded channels and/or more MIMO streams. However,
achieving dynamic channel bonding and large spatial multi-
plexing gains in high mobility is extremely challenging [21].
Furthermore, the spatial reuse decreases with 802.11ax due
to omnidirectional transmission and interference, resulting
in higher latencies and packet collisions. Relaying traffic
through nearby base stations can increase the latency to
tens of milliseconds [53] which is not acceptable for real-
time safety-critical vehicular applications. On the other hand,
millimeter-wave (mmWave) V2V links offer multi-gigabit
data rates, making it possible to realize a range of connected
and autonomous vehicle applications.
A major challenge arises from V2V mmWave links’ high

fragility due to frequent blockages. Our characterization re-
veals that mmWave channels encounter repeated blockages
from other vehicles, even when transceivers are rooftop-
mounted. This is due to significant diversity in vehicle heights
ranging from 3.5 ft to 6.5 ft for different types of passenger
cars [55] and up to 13 ft for buses and trucks. Even when con-
sidering urban traffic with a majority of passenger vehicles
and infrequent buses, mmWave links between vehicles are
frequently blocked and the blockage durations can be much
longer (in orders of seconds) depending on traffic density.
This is different from V2I channels (characterized in [76]
and [51]) where placing the base stations (BS) at a height on
roadside units or a nearby building is shown to achieve much
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fewer blockages. We also find that V2V channels can ben-
efit significantly from reflections available through nearby
buildings and infrastructure, especially in urban settings.
However, leveraging these reflections in the presence of con-
stant fast mobility and prolonged blockages (i.e., long NLoS
durations but short beam coherence durations) requires fre-
quent beam searching to maintain connectivity and to ensure
reliable and real-time sensor data transfer between vehicles.
While there is a plethora of prior work [16, 18, 42, 66] in

using out-of-band information (such as camera and LiDAR)
for improving mmWave beamforming, these works are lim-
ited to V2I scenarios and require cameras or LiDAR sensors
to be deployed in the environment or on BSs. Another prior
work [80] performs indoor LiDAR scanning to develop re-
flection profiles for zero-short beamforming. Extending this
work to outdoor scenarios is not straightforward as it would
require large-scale LiDAR profiling of the environment and
publicly available LiDAR datasets [19, 22, 44, 69] are limited
to terrain mapping and few urban locations. Sharing vehi-
cle location information over an out-of-band channel such
as DSRC as proposed in [26] is also not sufficient as they
do not help mmWave transceivers to profile environmental
reflectors such as buildings. Hence, there is clearly a need
for a novel, practical solution that can enable reliable V2V
mmWave connectivity with low beamforming overhead.

In this paper, we ask the following question: can we lever-
age widely available street view images for improving the
mmWave connectivity between vehicles? We claim that
street view (SV) images could be an important yet unexplored
solution to performing fast recovery from V2V blockages.
There are various benefits of using SV images. They are read-
ily available from a range of different map providers includ-
ing Google [8] and Microsoft Bing [11]. They are fairly up-to-
date especially for urban areas with dense traffic [10]. And
most importantly, these images are collected at reasonably
high resolution (e.g., 16384 × 8192) so that they can be used
for performing various image recognition tasks [74, 75, 81].
The main idea of our work is to design a system (referred to
as mmSV) that is capable of leveraging existing SV images
to create 3D reflection maps through material identifica-
tion. These maps can then be utilized by vehicles to perform
efficient raytracing and low-overhead beamsearching in real-
time. As a result of this process, vehicles are able to identify
high-SNR beams for communication and achieve uninter-
rupted high data rates and low latency. Developing mmSV
requires us to address multiple challenges. We describe these
challenges and our solution approach next.
Challenge 1. Given the SV images, how can we create 3D
reflection maps that can be useful to predict mmWave reflec-
tion? The SV images provide a detailed view of the surround-
ing buildings and other infrastructure that are made up of a
diverse set of materials such as concrete, metal, glass, wood,

stucco, vinyl, etc. As known from prior mmWave measure-
ments [47, 48], these materials have different permittivity
and reflect the mmWave signals differently.

To address this challenge, we develop a material segmen-
tation and identification model that can classify the material
patches in SV images. We find that there is no publicly avail-
able dataset for outdoor construction materials. Therefore,
we develop our own large dataset with over 1200 SV images
and 160𝐾 material patches with careful manual labeling. The
dataset is employed for material segmentation and subse-
quent dynamic object removal to extract 2D material maps.
These maps are then projected on 3D building structures for
creating a 3D material reflection map that can then be used
by vehicles to identify potential mmWave reflections.
Challenge 2. How can a vehicle use the 3D material maps
to communicate over mmWave efficiently and reliably with
another vehicle in urban settings? A transmit (Tx) vehicle can
fetch the 3D material map based on its location to identify
and localize reflectors of different materials around it, but
how can it know which mmWave paths are available, their
SNR and angle of departure (AoD), andwhich transmit beams
to use to realize those paths?

mmSV develops an environment-driven hierarchical ray-
tracing method that operates in two stages. In the first stage,
it utilizes “raytubes” (a few carefully chosen rays) aimed
at object walls, pinpointing surfaces with high-probability
reflection. In the second stage, uniform shoot and bounce
raytracing is performed on the first stage’s reflective surfaces.
Incorporating material type and reflectivity data enables real-
time mmWave path and AoD calculations. mmSV then uses
restricted beamsearching to check the availability of these
paths and their signal strength before identifying the beam
that can provide high SNR to the receiver. mmSV also per-
forms implicit localization of Rx vehicles from Tx using the
channel measurements of restricted beamsearching, elimi-
nating the need for out-of-band communication completely.
Summary of evaluation. We evaluate mmSV using our
60 GHz mmWave testbed with software radios and 802.11ad
access points mounted over vehicles and carts. We perform
mmWave experiments on two road segments with vehicles
at over 260 separate locations to evaluate mmWave chan-
nel predictions based on 3D material maps. We summarize
the evaluation results as follows: (1) Our material identifi-
cation shows that mmSV can identify the material with a
mean accuracy of 90.62% for patch material classification
and 86.7% for full scene material segmentation. This includes
11 commonly found SV materials such as brick, stucco, vinyl,
stone, and glass. Our 3D material map generation model is
shown to be robust and generalizable as it is trained on a
large number of urban SV images and tested on a completely
different set of SV images in different urban areas (randomly
chosen across the United States). (2) We find that mmWave
paths predicted from 3D material maps created through SV
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Fig. 1: (a) Two road segments of NY and SF used in our mmWave channel characterization along with different
traffic density, (b) NLoS durations between two vehicles at different traffic density, (c) beam coherence duration,
and (d) beamforming overhead and percentage reflections from buildings for two road segments.
images can correctly predict 93.2% of mmWave paths with a
mean distance (from Tx to Rx via reflector) error of 1.26𝑚
and mean azimuth angle error of 3.53◦. We also find that
the mean predicted reflection loss error is 1.75 dB in all four
segments. (3) Our environment-driven raytracing remark-
able speed up (99× compared to the conventional shoot and
bounce method) with the use of 3D material maps, making it
possible to perform the process in real-time for the vehicles.
(4) Our end-to-end evaluation shows that the SNR difference
of the beam found using our 3D material map compared
to the highest-SNR beam is less than 1 dB. mmSV achieves
this SNR difference by probing only 6 beams on average out
of 64 beams used in exhaustive beam scanning. (5) Lastly,
mmSV achieves mean link-layer throughput of 810 Mbps
and latency of 0.17𝑚𝑠 compared to 309 Mbps and latency of
1.32𝑚𝑠 using default 802.11ad protocol.
Contributions. The contributions of the paper can be
summarized as follows:
• mmSV presents a first-of-its-kind material identification
model for SV images with the application in wireless propa-
gation modeling.
• mmSV designs an end-to-end solution for mmWave V2V
communication including 3D material map design, low-cost
environment-driven raytracing, and restricted beamsearch-
ing to maintain high-SNR mmWave connectivity.
• We extensively evaluate mmSV using real SV images and
mmWave testbed to demonstrate the feasibility of the system
and its efficacy over conventional mmWave protocols used
in the V2V context.
2 Motivation
We first characterize LoS/NLoS durations along with beam
coherence durations for typical urban V2V channels. We
pick two road segments (2.45 miles of Madison Avenue in
New York and 2.12 miles of Market Street in San Francisco as
shown in Fig. 1a) for the purpose. To capture realistic traffic
patterns, we use the traffic reports provided by the Depart-
ment of Transportation for NY [9] and SF [7] on both road
segments and calculate the traffic density. These resources
offer the Annual Average Daily Traffic (AADT) for the road
segments which is the total volume of vehicle traffic on a
highway/road for a year divided by 365 days.

We categorize the traffic densities into two categories:
high (900 vehicles per hour) and moderate (600 vehicles per
hour). We then use these traffic densities to simulate realistic
vehicle trajectories on the same road segments (number of
lanes, intersections, etc.) in SUMO [52], a state-of-the-art
traffic simulator. We then use these traffic density values and
simulate realistic vehicle trajectories for the same road lay-
outs using the SUMO traffic simulator [52]. We also use the
OSM (Open Street Map [56]) data for the two road segments
and export their 3D profile (building structures, maps, road
layout, etc.). The 3D profile and the traffic vehicle trajectories
are then input into the Remcom Wireless InSite [3] channel
simulator for propagation estimation. We use CAD models
of sedans (average height 4.6 ft), SUVs (average height 5.9 ft),
and buses (average height 13 ft) in Remcom Wireless InSite.
Based on a percentage of vehicles on the road reported to be
SUVs (9% [23]) and trucks/buses (15% [7, 9]), we set the total
number of SUVs and buses to 24% of cars in our simulation.
We equip different pairs of vehicles with mmWave radios
and 64-element phased array antennas. As these pairs act as
transmitters (Tx) and receivers (Rx), their LoS paths can be
blocked by other vehicles taller than them, and NLoS paths
are enabled through buildings and other nearby reflectors
(e.g., metal road signs). For each segment, we simulate over
2000 instances (snapshots) where each instance corresponds
to different locations of vehicles on the road segment includ-
ing the Tx and Rx vehicles. Depending on their location, the
Tx and Rx vehicles are surrounded by different other vehicles
and buildings on the road segment, changing the mmWave
blockages and reflections.
NLoS durations. Fig. 1b shows the NLoS duration which
is the duration between two consecutive instances where
the LoS path is available between the two vehicles. We ob-
serve that the vehicles have to rely on NLoS paths for long
durations due to blockages and vehicle mobility. Also, as
the vehicle density increases, the probability of longer NLoS
durations also increases. This is due to more blockages from
other vehicles along with reduced vehicle mobility as the
traffic increases within a constrained physical space of the
road segment. Over 60% of NLoS durations are found to
be longer than 1𝑠 for moderate density while the number
increases to 85% for high density.
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Fig. 2: Overview of mmSV
Beam coherence and BF overhead. Fig. 1c shows the
beam coherence durations for two road segments where
a beam coherence duration is defined as the duration for
which the transmitter and receiver mmWave vehicles have
the same best (highest SNR) beam pair. If the beam coher-
ence durations are short, the two endpoints require frequent
beamsearching, incurring high overhead. We observe from
Fig. 1c that beam coherence durations are much shorter (less
than 1 second 80% of the time) for both road segments. This
shows that mmWave V2V channels in urban environments
not only result in long NLoS durations (Fig. 1b), the beams
have to be continuously adapted due to mobility, in turn
significantly increasing the beamforming overhead. Fig 1d
shows the beamsearching overhead defined as the percent-
age of time spent on beamsearching within every NLOS time
window. In order to calculate this time, we consider the total
time spent on Sector Level Sweep (SLS) and the SSW feed-
back duration. We find the beamforming overhead (based
on 802.11ad) to be 24% on average (Fig. 1d) for the two road
segments due to continuous beam adaptation in the presence
of high mobility and blockages.
Type of reflectors. Further analyzing the beamsearching
results, we find that stationary ambient reflectors such as
the buildings and other objects around the road play a major
role in providing NLoS paths compared to dynamic reflectors
such as other cars. Although other vehicles (beingmetal body
objects) provide reflections, such reflections are short-lived
(less than 50𝑚𝑠 95% of the time) due to their own mobility.
On the other hand, buildings are available for reflection for
longer durations in most urban environments. As shown in
Fig. 1d, 94.7% of reflections on average in both road segments
were from buildings while the remaining 5.3% were from
other vehicles. This shows that identifying, localizing, and
determining the reflectivity of stationary ambient reflectors
such as buildings could be critically helpful in improving link
connectivity while ensuring low beamforming overhead.
3 System Overview
Fig. 2 shows the overview of mmSV which consists of an
offline material identification part and an online restricted
beamsearching part. In the offline phase, material segmen-
tation and identification are performed on SV images. This
process includes over-segmentation and removal of dynamic
objects (such as cars, people, etc.) from SV images that are not

part of the stationary infrastructure (buildings, etc.). The ma-
terial identificationmodel is trained using our street viewma-
terial (SVM) dataset. The output of the model is 2D material
images translated from SV images which are then combined
with 3D open street maps (OSM). The OSM maps include
information such as the height and shape of the buildings
that are used for projecting the 2D material images on 3D
surfaces and creating 3D material maps. These 3D material
maps can be prepared offline to be used by the vehicles while
communicating over mmWave.

During the online phase, a Tx vehicle can leverage the 3D
material maps (downloaded/preloaded) based on its location
to perform raytracing.mmSV’s environment-driven raytrac-
ing reduces the raytracing overhead by focusing the rays on
surfaces of interest with reflecting materials based on our 3D
material maps. The AoD ranges calculated from raytracing
are then used to determine a small subset of beams that can
be probed by the Tx vehicle to find a high-SNR beam to the
Rx vehicle. The Tx vehicle also performs mmWave channel
measurements and uses that to localize the Rx vehicle with
the help of 3D material maps even when the LoS path is
blocked, eliminating the need for any out-of-band communi-
cation. The estimated Rx location is then adapted in the next
beamsearching time instance for performing environment-
driven raytracing and restricted beamsearching. This way,
mmSV creates an end-to-end V2V mmWave communication
system that leverages the 3D material maps at every step.
4 3D Material Maps
4.1 Material Segmentation and Identification
mmSV’s material segmentation and identification consists of
three modules as shown in Fig. 2: (1) Material identification,
(2) Over-segmentation, and (3) dynamic object removal.
4.1.1 Material Identification Given a pixel in an SV
image, the main goal of this step is to determine the proba-
bility that the pixel belongs to a specific material category.
At the core of this prediction module is a patch classifier that
classifies the pixel at the center of the patch into a material
category. The image classification models like GoogLeNet
[72] take images as input and output a class and are not
directly applicable to our purpose. Our material dataset re-
quires a patch-based segmentation model and segmentation
models such as [41] that rely on polygon annotation are not
suitable for our dataset. Instead, our machine learning model



mmSV: mmWave Vehicular Networking using Street View Imagery in Urban Environments ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Asphalt

Glass

Sky Metal

Stone

Foliage

StuccoBrick

Wood

Vinyl Polished Stone

Tiles
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is adapted from GoogLeNet [72] for the purpose of mate-
rial identification. While other well-known models such as
Resnet [37] and AlexNet [45] can be used for the purpose,
the stride at each layer results in a prediction every 224 pix-
els in Resnet which is sparse for our material identification
purpose. We modify the GoogLeNet model to get the pre-
dictions every 16 pixels. GoogLeNet introduces an inception
module that uses a combination of filters with different sizes
(1 × 1, 3 × 3, and 5 × 5) with less computational cost (10×
lower cost) than previous architectures like AlexNet. This
feature eases the ability to define a deeper structure with
minimum accuracy sacrifice. The structure consists of multi-
ple inception modules stacked together. To classify all pixels
of an SV image, we convert the model to a sliding window
model by replacing the last fully connected layer with a con-
volutional layer to densely classify a grid across the image.
This results in a fully convolutional network that can classify
images of any size. This convolutional structure results in a
pixel probability map that can be used in the next steps. The
weights of the network remain unchanged in our model and
the stride of each layer controls the density of the output
prediction. We use dense Conditional Random Field (CRF)
[43] to predict labels for every pixel. CRF uses energy

𝐸 (𝑥 |𝐼 ) =
∑︁
𝑖

𝜓𝑖 (𝑥𝑖 ) +
∑︁
𝑖< 𝑗

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) (1)

where 𝜓𝑖 is the unary energy (negative log of the aggre-
gated softmax probabilities 𝑝𝑖 ) and 𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) = 𝑤𝑝𝜎 (𝑥𝑖 ≠
𝑥 𝑗 )𝑘 (𝑓𝑖 − 𝑓𝑗 ) is the pairwise term that connects every pair
of pixels (𝑥𝑖 , 𝑥 𝑗 ) in the image. We use a single pairwise term
with a Potts label compatibility term 𝜎 weighted by𝑤𝑝 and
unit Gaussian kernel 𝑘 . For a feature 𝑓𝑖 , we convert the RGB
image to 𝐿∗𝑎∗𝑏∗ color space and use color (𝐼𝐿𝑖 , 𝐼

𝑎
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sition (𝑝𝑥 , 𝑝𝑦) as pairwise features for each pixel, yielding
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], where 𝑑 is the smaller image

dimension and \ values are the CRF model parameters.
4.1.2 Street View Material (SVM) Dataset Although
the problem of material identification has been studied in
the context of the indoor and outdoor environment in prior
works such as [20, 67], the datasets used in these works are
not directly useful in mmSV. This is because prior datasets
such as the MINC dataset [20] include a range of materials
such as food, carpet, hair, etc. that are not useful for SV
images. Similarly, these datasets lack various materials such
as vinyl and stucco that are commonly used construction
materials [24] found in outdoor building images.

Material # of patches Material # of patches
Asphalt 47013 Stone 5365
Sky 48214 Metal 4234

Foliage 15879 Tile 4152
Vinyl 6562 Wood 3356
Stucco 5894 Polished

Stone 2920Brick 5774
Glass/mirror 8060 Ceramic 2500
Table 1: Number of patches in our SVM dataset

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Material identification process: (a) original SV
image, (b) material classification with sloppy bound-
aries, (c) superpixels, (d) output of over-segmentation,
(e) dynamic object masks, (f) final predicted material
SV image with dynamic objects removed.
To address this challenge, we develop the SVM dataset

using 1200 street view images (1000 for training, 200 for
evaluation) collected from various online SV image platforms
such as Google Street View [8] and Bingmaps [11]. The street
view images are selected randomly from urban areas such as
New York, San Francisco, and Chicago. We manually label
the patches of size 256× 256 in these images to create a total
of 132, 423 new patches in the SVM dataset. We annotate the
street view images in two ways. First, we manually identify
segments that are carefully drawn polygons containing the
same material. Second, we also identify clicks which are
single points in an image with their corresponding material
label. Examples of new extracted patches are shown in Fig. 3.
The dataset includes 13 material categories found in these
images as listed in Table 1. For materials that are already
included in the indoor material MINC dataset, we augment
our dataset with its patches to further improve the amount
of data. Overall, we include 17.3% patches for some of the
materials already included in the MINC-2500 dataset. To the
best of our knowledge, the SVM dataset is a first-of-its-kind
material dataset for SV images and the dataset can be useful
for a range of applications in wireless research including
channel estimation, propagation modeling, etc.
SVM Material Classification. In order to reduce the
processing time, our model uses SV images that are cropped
from the top and bottom. We find that the top 25% of all SV
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images used in our study do not have any objects (i.e., sky)
and cannot be used for reflection. Similarly, the bottom 25%
of the images are asphalt. While prior works [82] have shown
the possibility of ground reflection, these reflections are not
feasible in presence of a blocking vehicle. This means that
mmSV limits the SV images using −45◦ to +45◦ elevation
angles from the LoS ray connecting the Tx and Rx.

In order to further increase the density of the output pre-
dictions, we perform grid prediction at three different scales
(𝑑/

√
2, 𝑑 and 𝑑

√
2 where 𝑑 is the smaller dimension of the

image). We then upsample the output maps using bilinear
interpolation and average the three predictions. Since the
dense CRF is computationally expensive, we upsample the
output to a fixed size of 360 × 1440. Since the FoV of SV im-
ages covers 360◦ horizontally and 90◦ vertically, dividing the
width and height of the CRF output by these angles results
in 4 × 4 pixel prediction for each angle in the image.
4.1.3 Over-segmentation Although the above mate-
rial identification does yield an approximate segmentation,
it has two issues: (i) pixel misclassification causes noise in
the output material map and (ii) as reported in previous
works [20], the output shows sloppy boundaries when the
model is trained on clicks which are single points in an image
with their corresponding material label. Even though our
model is trained on patches extracted from both segments
and clicks, it encounters the same issue (Fig. 4b). The idea
of over-segmentation is to partition the image into pixel
groups such that the pixels in the same group share com-
mon characteristics, leading to a prediction of them having
the same material as a group. The process removes outliers
(a small number of pixels misclassified within otherwise
correctly classified pixels). We leverage the idea of image
segmentation from [31] to detect superpixels for the purpose
of over-segmentation. Here, a superpixel is a group of pixels
that belong to the same surface in an image and are assumed
to correspond to the same material. We use a greedy algo-
rithm presented in [31] to obtain the superpixels. We note
that while the superpixel detection is performed using an
existing method, its integration and application for pixel-by-
pixel material classification is novel and unique to our work.
An example of extracted superpixels is shown in Fig. 4c, and
Fig. 4d shows the result of applying the over-segmentation.
4.1.4 Dynamic Objects Removal The street view im-
ages usually contain dynamic objects such as vehicles, hu-
mans, etc. We remove these objects from the images to only
retain stationary objects such as buildings, etc. We use an
existing model DeeplabV3 [25] to perform semantic segmen-
tation on the SV images. The model is pre-trained using the
cityscapes dataset [27]. The model detects the pixels associ-
ated with dynamic objects (shown in Fig. 4e). The detected
pixels result in a mask that we use as the areas to be removed
from the material identification results of the previous step.
We use the method in [73] to remove the objects. Fig. 4f

(a)

(b)

Street View Image 
Location Material of vertex on sphere

(brick) assigned to intersection

Partial sphere of material SV image

Fig. 5: (a) Projection of material map on 3D buildings,
(b) Example of final generated 3D material map.

shows the results of this method with dynamic objects re-
moved from the SV images.
4.2 Creating 3D Material Map
To the best of our knowledge, no prior work has demon-
strated creating a 3D material map using publicly available
maps and SV images. To create 3D material maps, mmSV
combines the results of material identification with 3D build-
ing geometries available from OpenStreetMap [56]. The pro-
cess involves two steps.
(1) Material projection and point cloud creation. The
first step is to combine the image data with 3D shapes of the
buildings to project the material prediction pixels onto the
3D building surfaces and find the location of each pixel in
3D space to create a point cloud. In order to do this, given
a material image, we form a partial sphere (partial because
the material identification only covers 90◦ elevation) with a
fixed radius as the initial position of material image pixels
(shown in Fig 5a). Now, a ray emitting from the origin of
the SV image to a pixel in the SV image sphere is calculated
and the intersection of the ray with a surface of a building
is determined. The intersection point is assigned the same
material as the pixel in the material SV image sphere. The
process is repeated for all pixels in the material SV image
and for all SV images of the road segment to create a point
cloud of the building surface with materials.
(2) Plane detection and final 3D material model gen-
eration. The final step is to convert the point cloud to
its corresponding surfaces and create a unified 3D material
model of the road segment that can be used for ray tracing.
Given the material point cloud from the previous step, we
run the RANSAC [32] algorithm to find the surfaces (planes)
that fit each part of the point cloud. Each surface is then split
into square faces of size 10 𝑐𝑚× 10 𝑐𝑚. Based on the material
identification result for each point, we assign the material
of the face to be the one that is most commonly predicted
for points in that face. Finally, we merge the neighboring
faces with the same material to create surfaces through an
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Fig. 6: Environment-driven raytracing: (a) initiated and reflected ray tubes, (b) SBR within ray tube of interest
towards a wall with material faces, (c) tree data structure used for modeling our environment
iterative process. An example of the final 3D material map
generated through the process is shown in Fig. 5b.
5 V2V Comm. using 3D Material Maps
Given the 3D material map of a given set of locations or a
road segment, we now address two outstanding questions:
(1) How can a Tx vehicle leverage the 3D material map to
determine the available mmWave paths to the Rx vehicle?
We develop an environment-driven raytracing process
that focuses the rays based on the 3D material maps to effi-
ciently and accurately determine the AoD of mmWave paths.
(2) How can the Tx vehicle select a small subset of beams
to probe such that a high-SNR beam to the Rx vehicle can
be found? We devise a restricted beamsearching method
that uses the raytracing output to maintain uninterrupted
connectivity with the Rx vehicle by finding a high-SNR beam.
5.1 Environment-driven Raytracing
A commonly used method for determining signal propaga-
tion paths is shoot-and-bounce raytracing (SBR [50]). In SBR,
rays are launched from the Tx in all directions with uni-
form ray density. The rays can then be traced in space and
their behavior (reflection, diffraction, scattering, etc.) can be
determined when they interact with different environment
objects. A key drawback of SBR is that although it launches
rays in all directions, it is possible that only a small subset of
rays actually contribute to the received signal at the receiver.
This is because SBR in its basic form is oblivious to the en-
vironment and presence of objects. This is the limitation
that mmSV tries to remove as it has detailed information
about the environment. We develop an environment-driven
raytracing whose basic idea is to launch rays towards envi-
ronment objects such that there is a higher probability of
them contributing to the received signal strength at the Rx.

mmSV incorporates the 3D material map into the raytrac-
ing by developing a two-phase hierarchical raytracing pro-
cess. In the first phase, it performs macro-scale path-tracing
using frustum raytracing. The purpose of this phase is to find
objects that can have a high contribution to the received sig-
nal if rays are reflected from them (i.e., objects and surfaces
that can provide a reflected path with a high probability). In
this phase, mmSV considers walls as primitives as shown in
Fig. 6a (a plane with two triangles without considering the
material) and shoots ray tubes towards the walls. Ray tubes
are pyramids whose apexes correspond with the location of
the Tx antenna and their base face coincides with one of the
walls as shown in Fig 6a. The main benefit of this approach is
the fact that mmSV only shoots a limited number of rays in

specific directions (toward the walls) and only needs to trace
the corners of the tubes which reduces the search space and
the processing time. In the second phase, given the ray tubes
from reflecting walls from the first phase, SBR is performed
with uniform ray density only within those ray tubes. This
phase considers the faces of different materials within the
selected walls, uses them to determine the reflection loss,
and ultimately identify the mmWave paths, their AoD, and
RSS. Phase 1 of ray tracing follows the following steps.
Step 1. Launch the initial set of ray tubes from the Tx
toward the four corners of planes (walls) as shown in Fig. 6a.
Step 2. Determine if the ray tube intersects with the corre-
sponding wall. The intersection is calculated between each
ray of the ray tube and the wall edges. To determine if a
ray and edge intersect, we use the Plücker coordinate rep-
resentation [58]. Plücker coordinates specify rays in three-
dimensional space using six-dimensional vectors. Given a
ray 𝑟 with its origin point 𝑃 and direction 𝐿, its Plücker coor-
dinates are given by: 𝜋𝑟 = {𝐿 : 𝐿×𝑃} = {𝑈𝑟 : 𝑉𝑟 } One feature
of Plücker coordinates is that given two rays 𝑟 and 𝑠 , the per-
muted inner product represented by 𝜋𝑟 ⊙𝜋𝑠 = 𝑈𝑟 ·𝑉𝑠 +𝑈𝑠 ·𝑉𝑟
specifies their relative orientation. In general, if 𝜋𝑟 ⊙ 𝜋𝑠 > 0,
𝑠 goes counterclockwise around 𝑟 . If 𝜋𝑟 ⊙ 𝜋𝑠 < 0, 𝑠 goes
clockwise around 𝑟 , and if 𝜋𝑟 ⊙ 𝜋𝑠 = 0, 𝑠 intersects or is
parallel to 𝑟 . This process of using Plücker coordinates to
determine intersection is repeated for all edges of the wall
and all rays of a ray tube. This determines if the ray tube
completely intersects, partially intersects, or misses the wall.
Step 3. If there is an intersection, generate a reflected ray
tube based on the intersection state. If there is a complete
intersection, the reflected ray tube can be calculated using
the wall’s normal and angle of incidence. For a ray tube
with four corners, if 𝑟 is a corner ray, this can be done by
calculating 𝑟 𝑓 = 𝑟 − 2(𝑟 .𝑛)𝑛 where 𝑟 𝑓 is the reflected corner
ray of 𝑟 , and 𝑛 is the normal of the wall. Fig. 6a shows a
reflected ray tube. If the ray tube partially intersects the wall,
it is clipped and only the parts of the ray tube that impinge
the wall will be used to calculate the reflected ray tube.
Step 4. If there is no intersection, check if the Rx is within
the reflected ray tube. If yes, add the initial wall to setW. If
no, discard the ray tube.
Step 5. Repeat Steps 2-4 for each initial ray tube until the
maximum number of bounces has been reached.

The result of Phase 1 is setW which is a set of walls that
can provide reflections and will be used along with SBR in
Phase 2. In Phase 2, the Tx initiates an SBR with a uniform
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density only for walls in W (Fig. 6b). As shown in Fig. 6c,
each wall inW is divided into faces where each face has a
material. The SBR results in a set of paths 𝑃 = {𝑝1, 𝑝2, ...}
where each 𝑝𝑖 includes the angle of departure (𝜙𝑖 , \𝑖 ), dis-
tance 𝑑𝑖 and the faces 𝐹𝑖 = {𝑓1, 𝑓2, ...} it goes through to
reach the receiver. Each 𝑓𝑗 = {𝐴𝑜𝐼 𝑗 ,𝑚 𝑗 } where 𝐴𝑜𝐼 𝑗 and
𝑚 𝑗 are the corresponding angles of incident and material
for that face. The RSS of each path 𝑝𝑖 can be calculated as
𝑅𝑆𝑆𝑝𝑖 = 𝑃𝑇 − 𝐿𝑃 (𝑑𝑖 ) − Σ𝑛𝑗=1𝐿𝑅 (𝑓𝑗 ) where 𝑃𝑇 is the transmit
power, 𝐿𝑃 is the free space path loss, and 𝐿𝑅 is the reflec-
tion loss for faces 𝑓𝑗 . 𝐿𝑅 depends on the complex material
permittivity and signal incident angle. 60 GHz mmWave
reflection loss for various materials has been extensively
studied in [47, 48]. We validate the measurement results us-
ing our mmWave testbed as well for 50 different locations
across a university campus (we do not include this result due
to space limitation). These reflection loss values for mate-
rial and angle are stored as a lookup table that we refer to
calculate the RSS for each path.
5.2 Restricted Beamsearching
If the Tx vehicle knows the AoD of mmWave paths estimated
from the environment-driven raytracing, it can use them to
directly determine the corresponding Tx beams(s) to use.
However, such as zero-shot beamforming is not feasible in
our scenario due to two reasons. First, the LoS path and
the reflected paths determined from 3D material maps can
be blocked by dynamic objects in real-time. This includes
blockages from objects like other vehicles or pedestrians.
Second, the AoDs calculated from the 3D material maps
can have errors. This can be due to the inaccuracy in OSM
building information and street view images as well as Tx
and Rx location errors. Due to these reasons, we propose
to employ restricted beamsearching (instead of zero-shot
beamforming) that searches a small subset of beams that
have high gain in the direction of estimated paths.
5.2.1 Determining beams to probe Tx should account
for three sources of errors: (i) its own GPS location error, (ii)
material map error due to inaccuracies in OSM 3D maps, and
(iii) error in calculated Rx location. We use prior empirically
known values [36, 49] for the first two and our measured
mean prediction error for Rx location to calculate the AoD
ranges that can then be used for beam selection. Using the
range of AoDs determined, mmSV selects a subset of beams
that can cover those angles. Specifically, a beam that achieves
the highest gain for any angle within a given AoD range
is added to that path’s subset of beams to be probed. This
subset of beams is then probed by the Tx vehicle to determine
any dynamic blockages and the best beam (highest SNR) is
chosen for communication.
5.2.2 Integrated Restricted Beamsearching and Lo-
calization using 3D Maps Our environment-driven ray
tracing described above assumed that the Tx vehicle knows

the location of the Rx vehicle. Since we are primarily inter-
ested in Tx beamforming, the Tx needs to know the relative
Rx location. While it is possible for the Rx vehicle to share its
GPS location, such communication requires an out-of-band
channel (e.g., sub-6 GHz) which is not always feasible in
practice. Hence,mmSV relies on in-band mmWave-based lo-
calization that leverages our previously developed 3D maps
while building on restricted ray tracing and beamsearching.

Given the inter-dependency between Rx localization and
environment-driven restricted beamsearching (beamsearch-
ing and raytracing require Rx location while Rx localization
itself is estimated using restricted beamsearching based chan-
nel measurements), mmSV develops an integrated process
for both where the Rx localization is performed after each
restricted beamforming. The restricted beamforming can be
triggered every time instance whenever there is a change in
SNR for the current beam. The SNR change can be a result
of Rx mobility relative to Tx or blockage (e.g., by another
vehicle) of their current mmWave path. A new beam needs
to be determined in both cases through the use of restricted
beamsearching.
Step 1: AoD range estimation through environment-
driven raytracing. At each time step 𝑡𝑛 , Tx uses its own
location (available throughGPS) and Rx location known from
the previous time step 𝑡𝑛−1. Here, the time steps refer to con-
secutive time instances when Tx performs beamsearching.
Tx uses the environment-driven raytracing process discussed
in Sec. 5.1 to determine the AoD ranges from Tx to Rx.
Step 2: Restricted beamsearching and CIR measure-
ments. Based on the AoD ranges estimated in the previous
step, Tx identifies the beams with the highest gains in those
directions using the process discussed in Sec. 5.2. Tx probes
this subset of beams and identifies the one with the highest
SNR for communication with Rx at time 𝑡𝑛 . It also collects
the CIR measurements and calculates the power delay profile
(PDP) for each probed beam for Rx localization. The PDP
can be extracted from the Short Training Field (STF) and
Channel Estimation Field (CEF) at the beginning of each
802.11ad frame. We use the method in [30] to extract the
PDP for each beam. The CIR and PDP measurements are fed
back to the Tx from Rx and the feedback is counted towards
the beamforming overhead calculation.
Step 3: Rx localization. The Tx separately estimates the
location of Rx using different path directions by correlating
the corresponding path amplitude with the beam patterns.
We follow the approach presented in [57]. Themain idea here
is to probe a set of beams and then correlate the beam gain
pattern for each beam with the measured SNR response of
that beam to identify the AoD. The AoD then combined with
the ToF measurement can be used to localize the Rx. A key
difference here is that [57] approach probed all beams while
mmSV only probes a small subset of beams. However, these
small subsets of beams are selected based on the estimated
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Material AlexNet mmSV Material AlexNet mmSV
Asphalt 99.9 99.9 Stone 74.8 83.6
Sky 99.8 99.8 Metal 69.6 85.1

Foliage 97.7 97.9 Tile 71.8 86.5
Vinyl 97.3 99.5 Wood 74.4 83.9
Stucco 96.9 98.3 Polished

Stone 70.2 81.5Brick 87.2 92.2
Glass 83.1 87 Ceramic 76.8 82.8

Mean class accuracy AlexNet: 84.57 mmSV: 90.62
Table 2: Material classification accuracy (%)

AoDs, yielding a comparable performance. Also, localization
in [57] is limited to the LoS path, but with the help of 3D
material maps, we are able to extend the same approach
to NLoS paths as well. For the distance measurement, we
use the Fine Time Measurement (FTM) ranging procedure
described in IEEE 802.11mc [2] to get ToF measurement from
FTM-capable 802.11ad devices in our testbed. We assume
TX and RX are not aware of each other’s location at the
initial timestep and they perform exhaustive 802.11ad-type
beamforming in the first step to determine it. This is only
needed during the first timestep.

After independently estimating the Rx location using each
available path (LoS or NLoS), mmSV calculates a geometric
median of all estimated locations using Weiszfeld’s algo-
rithm [79] as the predicted Rx location. The Rx location esti-
mated at time 𝑡𝑛 will now be used at the next beamsearching
at 𝑡𝑛+1 starting from Step 1 above.
6 Evaluation
We evaluate mmSV in two parts. First, we understand the
performance of our street view material identification mod-
ule using our SVM dataset and a number of additional street
view images. Second, we use our 60 GHz mmWave software
radio testbed along with 802.11ad commercial devices to
evaluate the reflections over generated 3D material maps,
restricted raytracing and beamsearching, and end-to-end
throughput and delay.
6.1 Street View Material Identification
6.1.1 Patch classification We compare our street view
material identification model with an existing well-known
model (AlexNet [45]). We use our SVM dataset with 160K
patches with material labels for the purpose. Here, we use
85% of the patches for training, 5% for validation, and 10% for
testing. For both models, we use stochastic gradient descent
with a batch size of 64, momentum of 0.9, an initial learning
rate of 10−2, and weight decay of 10−4. The learning rate (𝑙𝑟 )
updates as 𝑙𝑟 = 𝑙𝑟 × 0.1

𝑒𝑝𝑜𝑐ℎ#−1
40 every epcoch.

As discussed in Section 4, the choice of patch scale has a
significant impact on the accuracy. If a larger scale is used,
the patch includes more context but the spatial resolution de-
creases. To determine the patch scale, we evaluate our model
with different patch scale values (6.25%, 12.5%, and 25%) and
we find that the highest accuracy is achieved at 6.25%. Our
results show that a larger patch scale only works better in
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Fig. 7: Full scene material segmentation accuracy (a)
with and w/o over-segmentation, (b) by material.
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Fig. 8: Examples of original street view images and
corresponding material images created by mmSV.

classifying materials such as glass, sky, and brick. For the
glass category, the patch is misclassified due to visible light
reflection, resulting in a mirror image of the object/material
opposite to the glass surface. The same is true when the glass
is see-through and the material behind the glass is detected
as the material instead of glass. When a larger patch scale is
used, the inclusion of the frame around the glass windows,
walls, or doors helps in better classifying them as glass as
opposed to material in reflection or behind the glass. On the
other hand, a smaller patch scale better detects materials
that have a grainy texture (e.g., concrete).
Table 2 shows the patch classification accuracy for dif-

ferent materials for our material identification model and
AlexNet. The material categories such as asphalt, sky, fo-
liage, vinyl, stucco, etc. have high accuracy since they are
more commonly found in typical street view images in urban
settings, resulting in more data in terms of their number of
patches. In contrast, materials such as wood, polished stone,
and ceramic are relatively less common. Even with such an
imbalance of the data, our model can provide a mean accu-
racy of 90.62%, significantly outperforming state-of-the-art
models such as AlexNet which achieves 84.57% accuracy.
6.1.2 Full scene material segmentation We now eval-
uate pixel-by-pixel material classification performance on
street-view images. In order to do so, we collect additional
200 street-view images to create a test and validation image
set. These images are randomly chosen from urban areas
throughout the United States. We manually annotate the
200 images using carefully drawn polygon and their mate-
rial labels. We split the image set into test (80%) and val-
idation set (20%). We evaluate 2430 combinations of CRF
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Fig. 9: (a-b) 3D material map measurements, (c-d) Measured ground truth and predicted power angular profile.

parameters (\𝑝 , \𝑎𝑏, \𝐿,𝑤𝑝 ) and over-segmentation parame-
ters (𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒, 𝜎,𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒) on validation
set and find the best-performing combination to use.
Fig. 7a shows the pixel classification accuracy (number

of pixels for which the material is correctly classified or
total number of pixels) and mean material class accuracy
with and without over-segmentation. Fig. 7b shows material
class accuracy for each material. The results clearly show the
impact that over-segmentation has (improvement of 8.96%)
on material identification. Fig. 8 shows examples of how
existing street images are converted to their corresponding
material images using our model.
6.2 mmWaveNetworkingwith 3DMaterialMaps
6.2.1 Testbed and experiment setup We consider two
types of 60 GHzmmWave devices in our evaluation (Fig. 10a):
(i) a software radio system that consists of a phased-array
based RF frontend from Sivers Semiconductors [13] and
USRP as baseband processor, and (ii) Commercial off-the-
shelf 802.11ad AP from MikroTik [12]. The Sivers 60 GHz
RF frontend has two phased antenna arrays (one for sending
and the other one for receiving) with 64 antenna elements
each. We use the default codebook from Sivers with 63 beams
where the mainlobe angle of every beam is approximately
every 1.5◦ in Azimuth. We perform a separate measurement
campaign to measure the beam patterns of each beam in
the codebook. Here, we use another horn antenna based 60
GHz system (VubIQ [14]) to measure the gain of every beam
of Sivers while rotating it on a mechanical rotator. We use
Sivers+USRP as Tx and Rx for our 3D map evaluation includ-
ing power angular profile, reflection path assessment, and
loss prediction as it provides better control over beams (i.e.,
fewer sidelobes, finer granularity of angles, etc.).

Apart from the software radio system,we also useMikroTik
802.11ad AP that has three antenna array patches of 32 ele-
ments and 64 beams as Tx. Here, we use Sivers RF frontend
with an Oscilloscope (Keysight MSO9404A) to receive the
data. This setup enables us to measure the 802.11ad beacons,
beamforming frames along with PHY preambles to measure
CIR and calculate PDP and ToF, along with SNR. We use the
MikroTik Tx and Sivers+Oscilloscope Rx for restricted beam-
searching evaluation including localization and throughput.
Outdoor experiments. Weperform our evaluation through
outdoor measurements using our mmWave testbed on four
road segments on a university campus. As shown in Fig. 10b,
the four road segments are 350𝑚, 120𝑚, 167𝑚 and 85𝑚

SiversIMA RF 
front-end

USRP

Mikrotik AP

Phased 
Array 

Antenna

(a)

Road Segment 1
~350 m

Road Segment 2
~120 m

Road Segment 3
~167 m

Road Segment 4
~85 m

(b)
Fig. 10: (a) Our mmWave testbed and (b) Four road
segments used in evaluation.
long, respectively. The roads are surrounded by buildings (2-
5 floors) resembling a typical urban scenario. The buildings
include different types of materials including brick, concrete,
glass, stone, and metal. We use publicly available street view
images from Google for the four road segments.
6.2.2 3Dmaterial map In this section, we evaluate how
accurately our model reconstructs the 3D material map from
the SV images. We also evaluate what are the errors when
we use our constructed 3D material map to detect mmWave
reflection paths. In order to do these, we collect mmWave
channel data at 118 Tx-Rx location pairs in the four road
segments as shown in Fig. 9a. These channel measurements
include AoA and RSSI for different mmWave paths (LoS and
paths reflecting from buildings) for the Tx and Rx locations.
We use our Sivers software radio system to perform exhaus-
tive beam scanning on both Tx and Rx at each location to
measure all possible mmWave paths in the environment.
These measurements act as ground truth to our predicted
reflection loss based on 3D material maps. We also collect
the actual physical distance between Tx, Rx, and buildings.
Fig. 9b shows our mmWave data collection setup on tripods.
Power angular profile. For each of the road segments,
we use publicly available street view images from Google
and reconstruct their 3D material map using the process
described in Section 4. We then use our environment-driven
raytracing to identify the mmWave paths, their AoA/AoD,
and RSSI. Figs. 9c and 9d show the power angular profile for
two receive locations based on our measurements and 3D
material map-based prediction. We find thatmmSV correctly
captures the angle and RSSI for LoS and reflected paths (from
brick and glass walls in Figs. 9c and 9d). We note that when
the reflective object is not part of our 3D building material
map (e.g., a car passing by), its corresponding reflection is
not predicted by our model as expected. Fig. 9d shows such
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Fig. 11: 3D material map evaluation.

an example. We find that such reflections are short-lived as
well as they provide very small RSS.
Number of reflected paths and their material. We fur-
ther compare the ground truth and output of our environment-
driven raytracing. Fig. 11a shows the number of mmWave
paths correctly detected through our model compared to
the ground truth measurements. We find thatmmSV detects
on average 93.2% paths correctly. We find that apart from
the paths created by dynamic objects such as cars, errors in
OSM 3D building information lead to missing paths in our
prediction, especially on the edge of the buildings. In terms
of the material of the reflected paths, we find that 84.07% of
the material is detected correctly by our model.
Distance, angle and loss prediction. We now compare
the distance error which is the distance difference between
the measured distance for a signal path compared to the
predicted distance in our model. Fig. 11b shows the CDF of
distance error. We find that the mean distance error is 1.27𝑚.
Similarly, Fig. 11c shows the CDF of the angle difference
between the ground truth and predicted NLoS paths from
our raytracer. We find that the mean (azimuth) angle error
is 3.53◦. Both distance and angle errors show that our re-
constructed 3D material map closely matches reality. The
inaccuracy in OSM 3D building models is the primary source
of these errors. Lastly, Fig. 11d compares the predicted and
measured reflection loss. We find the measured reflection
loss by subtracting the distance-based path loss and Tx and
Rx antenna gains from the received power. The predicted
reflection loss is based on the predicted material and signal
incident angle. We find that the predicted loss is on average
2.74 dB, 1.88 dB, 1.66 dB and 1.14 dB lower than the ground
truth for the four road segments, respectively. The difference
is due to the complexity of the two road segments and the
materials used as well as the OSM building information error.
We note that the first and third road segments are longer
and have more diversity in terms of building materials, re-
sulting in slightly higher angle estimation errors compared
to the other two road segments. The maximum error of 6 dB
happens due to the angle prediction error in which mmSV
predicts the path to reflect from a brick wall instead of glass.
Raytracing and beamsearching time. Our environment-
driven raytracing should run in real-time to support the
beamforming. Our results on two road segments show that
compared to SBR, our method achieves a dramatic reduction

in the number of rays to trace. We find that just knowing
the presence of objects and focusing the rays on specific
walls as per probability of reflection reduces the number of
rays from ≈ 1.1𝑀 in SBR to ≈ 2.1𝐾 in mmSV (close to 99×
reduction). In terms of time, when simulating this on a quad-
core Intel CPU, mmSV takes 0.4𝑚𝑠 for its raytracing. On
the latest GPUs equipped with dedicated ray-tracing cores
with the capability to process tens of millions of rays per
second, our raytracing can be done within microseconds.
The localization method used in the work increases the CPU
utilization only by ≈ 2% on the same CPU. The average
number of beams to search at each time step in mmSV is 6
(Fig. 12d) which takes 0.17𝑚𝑠 to probe and get feedback as
per 802.11ad SSW. This means that mmSV takes on average
0.57𝑚𝑠 for raytracing and beamsearching on CPU (0.17𝑚𝑠
on GPU) which can be implemented in real-time on vehicles
even with moderate compute capabilities.
6.2.3 End-to-end evaluation on vehicle trajectories
We now evaluate how mmSV’s performance in terms of
restricted beamsearching, Rx localization, link layer through-
put, and beamforming overhead. We collect mmWave mea-
surement data at additional 81 Tx-Rx location pairs on road
segment 1. The locations are selected on both lanes of the
road to understand the impact of realistic traffic characteris-
tics such as lane changes. We use the 81 locations to create
5 vehicle trajectories. In two of the vehicle trajectories, the
vehicles use low lane changing behavior (1 lane change per
minute) while in the other three trajectories, the vehicles
exhibit high lane changing behavior (3 lane changes per
minute). Here, we use the Mikrotik 802.11ad APs as Tx and
Sivers software radios as Rx. This setup enables us to collect
CIR, PDP, ToF, and SNR as the 802.11ad AP scans different
beams depending on the scheme. Figs. 12a and 12b show our
experiment setup and 2 sample trajectories, respectively.
Restricted beamsearching. We use the above-mentioned
experiment setupwith vehicle trajectories to evaluatemmSV’s
performance in terms of predicting the correct Tx beams to
probe and localizing the Rx based on those beam measure-
ments. The subset of beams is derived based on the 3D mate-
rial maps created from street-view images and environment-
driven raytracing. We compare mmSV’s restricted beam-
searching with (i) hierarchical beamforming where Tx uti-
lizes a multi-level codebook and probes the beams with dif-
ferent beamwidths at different levels iteratively. We choose
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Fig. 12: (a) Data collection using vehicle-mounted mmWave radios (b) lane changing behavior(c) SNR difference
from the highest SNR beam for mmSV, compressive and hierarchical beamforming, (d) Number of beams to probe
to achieve a given SNR difference from the highest SNR beam, and (e) SNR difference of mmSV beamforming at
difference mean vehicle speeds.
this two-level approach as it is considered for 5G NR initial
access in [28, 33, 39, 78]. In our implementation on 802.11ad
MikroTik, the mean half-power beamwidth of the first and
second levels is 42◦ and 15◦, respectively, (ii) compressive
beamforming [68] where the Tx probes a randomly chosen
subset of beams (in the order of 𝑙𝑜𝑔(𝑛) where 𝑛 is the num-
ber of beams) to determine the AoD and selects the beam
with the maximum gain in AoD direction, and (iii) exhaus-
tive beamsearching (as in 802.11ad) where all Tx beams are
probed to determine the best beam.
SNR. Fig. 12c shows the SNR difference CDF for mmSV,
hierarchical and compressive beamforming compared to
the best (highest SNR) beam found through the exhaustive
search. For a fair comparison, we probe an equal number
of beams for both mmSV and compressive beamsearching.
We find that the average SNR difference for mmSV is 0.96
dB. mmSV performs better than both the hierarchical and
the compressive beamsearching where the average SNR dif-
ference is observed to be 2.65 dB and 4.06 dB, respectively.
We note that hierarchical beamforming performs better than
compressive beamforming and sometimes evenmmSV. How-
ever, it suffers from misidentification of the best beam often
when the reflected paths do not have high SNR when probed
using wider beamwidth beams. Fig. 12d shows the minimum
number of beams that need to be probed by all three methods
in order to find a beam that has 1 dB and 2 dB difference
from the highest SNR beam.mmSV significantly reduces the
number of beams to search primarily due to its knowledge
of the environment and environment-driven raytracing that
directly operates on 3D material maps. On the other hand,
since initial levels of hierarchical beamforming often do not
provide the required SNR, it probes the same number of
beams in both cases to get to high-gain beams at the lowest
level. Fig. 12e shows the performance of mmSV in terms of
SNR difference for three different mean vehicle speeds (20, 40
and 60 miles per hour). We use the collected measurements
to create vehicle trajectories at different speeds and evaluate
their impact on mmSV’s beamforming. Since mmSV takes
as low as 0.17𝑚𝑠 for beamsearching, there is no conceivable
impact in real-time as the vehicle speeds increase and SNR
difference at different vehicle speeds remains comparable.

0 5 10 15

Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

mmSV-LLC-1

mWaveLoc-LLC-1

mmSV-LLC-2

mWaveLoc-LLC-2

mmSV-LLC-R

mWaveLoc-LLC-R

(a)

0 5 10 15

Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

mmSV-HLC-1

mWaveLoc-HLC-1

mmSV-HLC-2

mWaveLoc-HLC-2

mmSV-HLC-R

mWaveLoc-HLC-R

(b)

0 5 10 15

Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

mmSV-LLC

mWaveLoc-LLC

(c)

0 5 10 15

Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

mmSV-HLC

mWaveLoc-HLC

(d)
Fig. 13: (a,b) Rx location error with one, two or random
(R) number of available paths; (c,d) Rx location error
with NLoS paths only. LLC and HLC stand for Low and
High Lane Changing, respectively.

Rx location. We now evaluate the performance of Rx
localization from Tx when it uses mmSV’s restricted beam-
searching in the presence of blockages. We compare the
performance with a state-of-the-art mmWave localization
scheme mWaveLoc proposed in [57]. mWaveLoc scans all
64 beams to measure the CIR and perform the localization.
On the contrary, mmSV only probes a subset of beams (on
average 6, max. 9) as part of the restricted beamsearching.
Figs. 13a and c show the location error for both methods. We
note that since this evaluation uses vehicle trajectories, it
includes LoS as well as NLoS paths available between the Tx
and Rx. To demonstrate the impact of blockage, we include
the results for different scenarios: (1) only one path is avail-
able (not blocked) and all remaining paths are blocked, (2)
two paths are available, and (3) a more realistic (R) scenario
where the number of available paths is random. Further-
more, Figs. 13c and d show the location error only for NLoS
situations. We find that mWaveLoc performs significantly
poorly in NLoS situations as it is primarily designed for LoS
path. On the other hand, mmSV, with its knowledge of the
environment, can distinguish between the LoS and NLoS
paths, and use the reflection path information (such as angle
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Fig. 14: Comparison of (a) link throughput and (b) link
latency including the beamforming overhead.

and distance) to better estimate the Rx. SincemmSV’s multi-
direction localization accuracy depends on the number of
available paths, we observe a decrease in accuracy when only
one path is available compared to two or more. Furthermore,
we observe a slight increase in the location error in scenarios
with high lane changing behavior due to the dependency of
mmSV’s localization on the location in the previous step.
Throughput and latency. We now evaluate the link-layer
throughput and latency overhead of beamforming for the
vehicle trajectories. We comparemmSVwith (i) compressive
beamforming, (ii) hierarchical beamforming, (iii) 802.11ad
which probes all beams, and (iv) an Oracle scheme that se-
lects the best beam without any overhead. Fig. 14a shows the
throughput comparison. The throughput is calculated for
every beacon interval (BI) over the trajectory. It is affected
by two factors: current SNR and the amount of time spent
in beamforming, both of which differ based on the scheme.
mmSV achieves a better throughput compared to compres-
sive beamsearching. This is due to two reasons. First, as
shown earlier, mmSV is able to find a beam with better SNR
due to its knowledge of the environment. Second, mmSV
does so while probing fewer beams, leaving more time for
data communication. Compared to hierarchical beamforming
which can result in misidentification of the best beam as men-
tioned earlier, the advantage mostly comes from mmSV’s
ability to select high SNR beams. While probing one sector
can take no more than 20 `𝑠 , vehicular channels require fre-
quent beamsearching due to relative mobility. In such a case,
a significant amount of time can be wasted on beamform-
ing when mmSV is not used. Fig. 14b shows the measured
link layer latency. Here, latency is calculated as the amount
of time a frame has to be buffered at the transmitter while
the link is established through beamforming. The latency
includes packet loss and the beamforming overhead, i.e., the
time taken to perform beamforming and establish a link in
the presence of vehicle mobility. The results clearly show a
reduction in latency for mmSV compared to other schemes
due to fewer beams probed to find a high-SNR beam.
7 Related Work
While a range of beamforming approaches [46] such as hi-
erarchical beamforming [17, 38, 71], compressive sensing
[54, 60–62], PDP based [70] and with co-phasing [40, 77]
have been proposed, their primary focused has been on

indoor non-vehicular channels. Performance of mmWave
networking in the vehicular environment is investigated
through experiments and simulations in [63], [51] and [76].
[51] showed that leveraging road geometry can help reduce
the beamforming overhead. Similarly, authors in [76] pro-
pose a pruned codebook to limit the selected beams to the
road geometry to achieve high coverage with low overhead.
These works focus on V2I communication where blockages
are shown to be infrequent [76]. On the other hand, we show
that V2V channels are highly dynamic with frequent block-
ages due to other vehicles. Also, limiting beam search to road
geometry is not effective in V2V as many of the reflections
are available through the surrounding environments.
Numerous studies explore out-of-band data to improve

vehicular mmWave communication. Techniques include the
use of DSRC [34], radars [16, 35], LiDAR [29], and cameras
[65] on BS, RSU, or elsewhere. [66] uses LiDAR, GPS and
camera images from each vehicle. In [64], vehicles broad-
cast GPS and type, combined with BS camera data, lowering
beamsearching overhead. Compared to mmSV, these works
require additional sensors on vehicles or base stations to
collect out-of-band information. On the other hand, mmSV
relies on already publicly available street view images and
does not require any real-time vision data collection. Re-
cently, authors in [80] proposed the use of a LIDAR sensor
for scanning the indoor environment and using it to perform
reduced overhead raytracing and mmWave beamforming. In
comparison, mmSV focuses on highly mobile V2V channels
in outdoor settings where pre-scanning the environment
using LIDAR to build a reflection profile for a large area
requires significant effort. Also, compared to SV images, pub-
licly available outdoor LIDAR datasets [19, 22, 44, 69] are
limited to few locations with terrain plan views only.
8 Conclusion and Discussion
In this paper, we presented a first-of-its-kind V2V mmWave
system that leverages street view images to efficiently find
reflections and maintain reliable connectivity. We note that
mmSV’s performance is limited by the publicly available 3D
environment maps (e.g., OSM). The 3D OSM models lack
granularity in terms of building microstructures. However,
such detailed structure information is not available unless
exhaustive 3D depth data is collected using sensors such
as LiDARs through cumbersome efforts. Although we find
that the impact is not significant because the majority of
building reflections are limited to elevation angles around the
horizontal plane of Tx/Rx vehicle antennas, it is also possible
that the SV images can be used to detect the microstructures
and improve the reflection predictions.
Acknowledgment
We thank our shepherd and anonymous reviewers for their
insightful comments. This research is supported by ARL
grant W911NF22-1-0216 and NSF grant CNS-2045885.



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Ahmad Kamari, Yoon Chae, Parth Pathak

References
[1] 2020. IEEE Draft Standard for Wireless Access in Vehicular Environ-

ments (WAVE) – Networking Services. IEEE P1609.3v4/D11, June 2020
(2020), 1–184.

[2] 2021. IEEE Standard for Information Technology–Telecommunications
and Information Exchange between Systems - Local and Metropoli-
tan Area Networks–Specific Requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions. IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016) (2021),
1–4379. https://doi.org/10.1109/IEEESTD.2021.9363693

[3] 2021. Remcom Wireless InSite 3D Wireless Prediction Software. .
https://www.remcom.com/wireless-insite-em-propagation-software.

[4] 2022. 3GPP Enhancement of 3GPP support for V2X Scenarios. https:
//www.3gpp.org/ftp/Specs/archive/22_series/22.186/.

[5] 2022. AUTONOMOUS VEHICLES. https://content.naic.org/cipr-
topics/autonomous-vehicles.

[6] 2022. Connected car fleet by region 2021-2035 . https://www.statista.
com/statistics/1155517/global-connected-car-fleet-by-market/.

[7] 2023. California Department of Transportation (Caltrans) . https:
//dot.ca.gov/programs/traffic-operations/census.

[8] 2023. Google Street View static API . https://maps.googleapis.com/
maps/api/streetview.

[9] 2023. NYS Department of Transportation . https://www.dot.ny.gov/
tdv.

[10] 2023. Sources of photography. https://www.google.com/streetview/
how-it-works/.

[11] 2023. The Bing Maps REST Imagery API. http://dev.virtualearth.net/
REST/v1/Imagery/MetaData/Streetside/.

[12] [n. d.. Mikrotik wAP 60Gx3 AP. https://mikrotik.com/product/wap_
60gx3_ap.

[13] [n. d.. The Evaluation Kits (EVKs) EVK06002. https://www.sivers-
semiconductors.com/sivers-wireless/evaluation-kits/evaluation-kit-
evk06002/.

[14] [n. d.. Vubiq, Irvine, CA, USA. 60 GHz Systems and Modules. https:
//www.ettus.com/product/details/N210-KIT.

[15] 3GPP. 2022. 5G;Service requirements for enhanced V2X scenarios
(3GPP TS 22.186 version 17.0.0 Release 17). https://portal.etsi.org/
webapp/workprogram/Report_WorkItem.asp?WKI_ID=65210.

[16] Anum Ali, Nuria González-Prelcic, and Amitava Ghosh. 2020. Passive
Radar at the Roadside Unit to Configure Millimeter Wave Vehicle-to-
Infrastructure Links. IEEE Transactions on Vehicular Technology 69, 12
(2020), 14903–14917. https://doi.org/10.1109/TVT.2020.3027636

[17] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath. 2014. Channel
Estimation and Hybrid Precoding for Millimeter Wave Cellular Sys-
tems. IEEE Journal of Selected Topics in Signal Processing 8, 5 (2014),
831–846.

[18] Muhammad Alrabeiah, Andrew Hredzak, and Ahmed Alkhateeb. 2020.
Millimeter Wave Base Stations with Cameras: Vision-Aided Beam and
Blockage Prediction. In 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring). 1–5. https://doi.org/10.1109/VTC2020-Spring48590.
2020.9129369

[19] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall. 2019. SemanticKITTI: A Dataset for Semantic Scene Under-
standing of LiDAR Sequences. In Proc. of the IEEE/CVF International
Conf. on Computer Vision (ICCV).

[20] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. 2015. Mate-
rial recognition in the wild with the Materials in Context Database.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 3479–3487. https://doi.org/10.1109/CVPR.2015.7298970

[21] Syed Hashim Raza Bukhari, Mubashir Husain Rehmani, and Sajid
Siraj. 2015. A survey of channel bonding for wireless networks and
guidelines of channel bonding for futuristic cognitive radio sensor
networks. IEEE Communications Surveys & Tutorials 18, 2 (2015), 924–
948.

[22] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and
Oscar Beijbom. 2020. nuScenes: A multimodal dataset for autonomous
driving. In CVPR.

[23] Mathilde Carlier. 2022. Sport utility vehicles worldwide - Statistics &
Facts. https://www.statista.com/topics/6185/suv-market-worldwide/
#topicOverviewhttps://www.statista.com/topics/6185/suv-market-
worldwide/#topicOverview.

[24] Ashok Chaluvadi. 2020. Regional Variations on Most Popular Exterior
Wall Materials. https://nahbnow.com/2020/10/regional-variations-on-
most-popular-exterior-wall-materials/?_ga=2.123814095.474119564.
1618212154-524437145.1617955526.

[25] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig
Adam. 2017. Rethinking Atrous Convolution for Semantic Image
Segmentation. CoRR abs/1706.05587 (2017). arXiv:1706.05587 http:
//arxiv.org/abs/1706.05587

[26] Junil Choi, Vutha Va, Nuria Gonzalez-Prelcic, Robert Daniels, Chan-
dra R. Bhat, and Robert W. Heath. 2016. Millimeter-Wave Vehicular
Communication to Support Massive Automotive Sensing. IEEE Com-
munications Magazine 54, 12 (2016), 160–167. https://doi.org/10.1109/
MCOM.2016.1600071CM

[27] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. 2016. The Cityscapes Dataset for Semantic Urban Scene
Understanding. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[28] Vip Desai, Lukasz Krzymien, Philippe Sartori, Weimin Xiao, Anthony
Soong, and Ahmed Alkhateeb. 2014. Initial beamforming for mmWave
communications. In 2014 48th Asilomar Conference on Signals, Sys-
tems and Computers. 1926–1930. https://doi.org/10.1109/ACSSC.2014.
7094805

[29] Marcus Dias, Aldebaro Klautau, Nuria González-Prelcic, and Robert W.
Heath. 2019. Position and LIDAR-Aided mmWave Beam Selection
using Deep Learning. In 2019 IEEE 20th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC). 1–5.
https://doi.org/10.1109/SPAWC.2019.8815569

[30] Haichuan Ding and Kang G. Shin. 2022. Accurate Angular Infer-
ence for 802.11ad Devices Using Beam-Specific Measurements. IEEE
Transactions on Mobile Computing 21, 3 (2022), 822–834. https:
//doi.org/10.1109/TMC.2020.3015936

[31] Pedro F Felzenszwalb and Daniel P Huttenlocher. 2004. Efficient graph-
based image segmentation. International journal of computer vision 59,
2 (2004), 167–181.

[32] Martin A. Fischler and Robert C. Bolles. 1981. Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography. Commun. ACM 24, 6 (jun 1981), 381–395.
https://doi.org/10.1145/358669.358692

[33] Marco Giordani, Marco Mezzavilla, and Michele Zorzi. 2016. Initial
Access in 5G mmWave Cellular Networks. IEEE Communications
Magazine 54, 11 (2016), 40–47. https://doi.org/10.1109/MCOM.2016.
1600193CM

[34] Nuria González-Prelcic, Roi Méndez-Rial, and Robert W. Heath. 2016.
Radar aided beam alignment in MmWave V2I communications sup-
porting antenna diversity. In 2016 Information Theory and Applications
Workshop (ITA). 1–7. https://doi.org/10.1109/ITA.2016.7888145

[35] Andrew Graff, Yun Chen, Nuria González-Prelcic, and Takayuki
Shimizu. 2023. Deep Learning-Based Link Configuration for Radar-
Aided Multiuser Mmwave Vehicle-to-Infrastructure Communication.
IEEE Transactions on Vehicular Technology (2023), 1–15. https://doi.
org/10.1109/TVT.2023.3239227

[36] Mordechai Haklay. 2010. How good is volunteered geographical infor-
mation? A comparative study of OpenStreetMap and Ordnance Survey
datasets. Environment and planning B: Planning and design 37, 4 (2010),
682–703.

https://doi.org/10.1109/IEEESTD.2021.9363693
 https://www. remcom.com/wireless-insite-em-propagation-software 
 https://www.3gpp.org/ftp/Specs/archive/22_series/22.186/
 https://www.3gpp.org/ftp/Specs/archive/22_series/22.186/
 https://content.naic.org/cipr-topics/autonomous-vehicles
 https://content.naic.org/cipr-topics/autonomous-vehicles
https://www.statista.com/statistics/1155517/global-connected-car-fleet-by-market/
https://www.statista.com/statistics/1155517/global-connected-car-fleet-by-market/
 https://dot.ca.gov/programs/traffic-operations/census
 https://dot.ca.gov/programs/traffic-operations/census
 https://maps.googleapis.com/maps/api/streetview 
 https://maps.googleapis.com/maps/api/streetview 
https://www.dot.ny.gov/tdv 
https://www.dot.ny.gov/tdv 
 https://www.google.com/streetview/how-it-works/
 https://www.google.com/streetview/how-it-works/
 http://dev.virtualearth.net/REST/v1/Imagery/MetaData/Streetside/
 http://dev.virtualearth.net/REST/v1/Imagery/MetaData/Streetside/
 https://mikrotik.com/product/wap_60gx3_ap
 https://mikrotik.com/product/wap_60gx3_ap
https://www.sivers-semiconductors.com/sivers-wireless/evaluation-kits/evaluation-kit-evk06002/
https://www.sivers-semiconductors.com/sivers-wireless/evaluation-kits/evaluation-kit-evk06002/
https://www.sivers-semiconductors.com/sivers-wireless/evaluation-kits/evaluation-kit-evk06002/
https://www.ettus.com/ product/details/N210-KIT
https://www.ettus.com/ product/details/N210-KIT
https://portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?WKI_ID=65210
https://portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?WKI_ID=65210
https://doi.org/10.1109/TVT.2020.3027636
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129369
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129369
https://doi.org/10.1109/CVPR.2015.7298970
 https://www.statista.com/topics/6185/suv-market-worldwide/#topicOverviewhttps://www.statista.com/topics/6185/suv-market-worldwide/#topicOverview
 https://www.statista.com/topics/6185/suv-market-worldwide/#topicOverviewhttps://www.statista.com/topics/6185/suv-market-worldwide/#topicOverview
 https://www.statista.com/topics/6185/suv-market-worldwide/#topicOverviewhttps://www.statista.com/topics/6185/suv-market-worldwide/#topicOverview
https://nahbnow.com/2020/10/regional-variations-on-most-popular-exterior-wall-materials/?_ga=2.123814095.474119564.1618212154-524437145.1617955526
https://nahbnow.com/2020/10/regional-variations-on-most-popular-exterior-wall-materials/?_ga=2.123814095.474119564.1618212154-524437145.1617955526
https://nahbnow.com/2020/10/regional-variations-on-most-popular-exterior-wall-materials/?_ga=2.123814095.474119564.1618212154-524437145.1617955526
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
https://doi.org/10.1109/MCOM.2016.1600071CM
https://doi.org/10.1109/MCOM.2016.1600071CM
https://doi.org/10.1109/ACSSC.2014.7094805
https://doi.org/10.1109/ACSSC.2014.7094805
https://doi.org/10.1109/SPAWC.2019.8815569
https://doi.org/10.1109/TMC.2020.3015936
https://doi.org/10.1109/TMC.2020.3015936
https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/MCOM.2016.1600193CM
https://doi.org/10.1109/MCOM.2016.1600193CM
https://doi.org/10.1109/ITA.2016.7888145
https://doi.org/10.1109/TVT.2023.3239227
https://doi.org/10.1109/TVT.2023.3239227


mmSV: mmWave Vehicular Networking using Street View Imagery in Urban Environments ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[38] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh.
2013. MillimeterWave Beamforming forWireless Backhaul and Access
in Small Cell Networks. IEEE Transactions on Communications 61, 10
(2013), 4391–4403.

[39] Aleksandar Ichkov, Simon Häger, Petri Mähönen, and Ljiljana Simić.
2022. Comparative Evaluation of Millimeter-Wave Beamsteering Al-
gorithms Using Outdoor Phased Antenna Array Measurements. In
2022 19th Annual IEEE International Conference on Sensing, Commu-
nication, and Networking (SECON). 497–505. https://doi.org/10.1109/
SECON55815.2022.9918162

[40] Ish Kumar Jain, Raghav Subbaraman, and Dinesh Bharadia. 2021. Two
Beams Are Better than One: Towards Reliable and High Throughput
MmWave Links. In Proceedings of the 2021 ACM SIGCOMM 2021 Confer-
ence (Virtual Event, USA) (SIGCOMM ’21). Association for Computing
Machinery, New York, NY, USA, 488–502. https://doi.org/10.1145/
3452296.3472924

[41] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec,
NanoCode012, Yonghye Kwon, Kalen Michael, TaoXie, Jiacong Fang,
imyhxy, Lorna, Zeng Yifu, Colin Wong, Abhiram V, Diego Montes,
ZhiqiangWang, Cristi Fati, Jebastin Nadar, Laughing, UnglvKitDe, Vic-
tor Sonck, tkianai, yxNONG, Piotr Skalski, Adam Hogan, Dhruv Nair,
Max Strobel, and Mrinal Jain. 2022. ultralytics/yolov5: v7.0 - YOLOv5
SOTA Realtime Instance Segmentation. https://doi.org/10.5281/zenodo.
7347926

[42] Aldebaro Klautau, Nuria González-Prelcic, and Robert W. Heath. 2019.
LIDAR Data for Deep Learning-Based mmWave Beam-Selection. IEEE
Wireless Communications Letters 8, 3 (2019), 909–912. https://doi.org/
10.1109/LWC.2019.2899571

[43] Philipp Krähenbühl and Vladlen Koltun. 2013. Parameter Learning
and Convergent Inference for Dense Random Fields. In Proceedings
of the 30th International Conference on International Conference on
Machine Learning - Volume 28 (Atlanta, GA, USA) (ICML’13). JMLR.org,
III–513–III–521.

[44] Sriram Krishnan, Christopher Crosby, Viswanath Nandigam, Minh
Phan, Charles Cowart, Chaitanya Baru, and Ramon Arrowsmith. 2011.
OpenTopography: A Services Oriented Architecture for Community
Access to LIDAR Topography. In Proceedings of the 2nd International
Conference on Computing for Geospatial Research &amp; Applications
(Washington, DC, USA) (COM.Geo ’11). Association for Computing
Machinery, New York, NY, USA, Article 7, 8 pages. https://doi.org/10.
1145/1999320.1999327

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Im-
ageNet Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems, F. Pereira,
C.J. Burges, L. Bottou, and K.Q. Weinberger (Eds.), Vol. 25. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[46] S. Kutty and D. Sen. 2016. Beamforming for Millimeter Wave Commu-
nications: An Inclusive Survey. IEEE Communications Surveys Tutorials
18, 2 (2016), 949–973.

[47] O. Landron, M.J. Feuerstein, and T.S. Rappaport. 1996. A comparison of
theoretical and empirical reflection coefficients for typical exterior wall
surfaces in a mobile radio environment. IEEE Transactions on Antennas
and Propagation 44, 3 (1996), 341–351. https://doi.org/10.1109/8.486303

[48] B. Langen, G. Lober, and W. Herzig. 1994. Reflection and transmission
behaviour of building materials at 60 GHz. In 5th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications,
Wireless Networks - Catching the Mobile Future., Vol. 2. 505–509 vol.2.
https://doi.org/10.1109/WNCMF.1994.529141

[49] Byung-Hyun Lee, Jong-Hwa Song, Jun-Hyuck Im, Sung-Hyuck Im,
Moon-Beom Heo, and Gyu-In Jee. 2015. GPS/DR Error Estimation for

Autonomous Vehicle Localization. Sensors 15, 8 (2015), 20779–20798.
https://doi.org/10.3390/s150820779

[50] H. Ling, R.-C. Chou, and S.-W. Lee. 1989. Shooting and bouncing rays:
calculating the RCS of an arbitrarily shaped cavity. IEEE Transactions
on Antennas and Propagation 37, 2 (1989), 194–205. https://doi.org/10.
1109/8.18706

[51] Adrian Loch, Arash Asadi, Gek Hong Sim, JoergWidmer, and Matthias
Hollick. 2017. mm-Wave on wheels: Practical 60 GHz vehicular com-
munication without beam training. In 2017 9th International Con-
ference on Communication Systems and Networks (COMSNETS). 1–8.
https://doi.org/10.1109/COMSNETS.2017.7945351

[52] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob
Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Jo-
hannes Rummel, Peter Wagner, and Evamarie Wießner. 2018. Micro-
scopic Traffic Simulation using SUMO, In The 21st IEEE International
Conference on Intelligent Transportation Systems. IEEE Intelligent
Transportation Systems Conference (ITSC). https://elib.dlr.de/124092/

[53] David Martín-Sacristán, Sandra Roger, David Garcia-Roger, Jose F
Monserrat, Panagiotis Spapis, Chan Zhou, and Alexandros Kaloxylos.
2020. Low-latency infrastructure-based cellular V2V communications
for multi-operator environments with regional split. IEEE Transactions
on Intelligent Transportation Systems 22, 2 (2020), 1052–1067.

[54] Z. Marzi, D. Ramasamy, and U. Madhow. 2016. Compressive Channel
Estimation and Tracking for Large Arrays in mm-Wave Picocells. IEEE
Journal of Selected Topics in Signal Processing 10, 3 (April 2016), 514–527.
https://doi.org/10.1109/JSTSP.2016.2520899

[55] Barrett Mohrmann. 2023. Height of a car and why it matters!
https://www.way.com/blog/height-of-a-car-and-why-it-matters/#:~:
text=The%20average%20car%20in%20the%20U.S%20is%20between%
20five%20and%20six%20feet%20high&text=But%20when%20driving%
20a%20vehicle,above%20the%20maximum%20passable%20height.

[56] OpenStreetMap contributors. 2017. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org.

[57] Ioannis Pefkianakis and Kyu-Han Kim. 2018. Accurate 3D Localization
for 60 GHz Networks. In Proceedings of the 16th ACM Conference on
Embedded Networked Sensor Systems (Shenzhen, China) (SenSys ’18).
Association for Computing Machinery, New York, NY, USA, 120–131.
https://doi.org/10.1145/3274783.3274852

[58] Nikos Platis and Theoharis Theoharis. 2003. Fast Ray-Tetrahedron
Intersection Using Plucker Coordinates. Journal of Graphics Tools
8, 4 (2003), 37–48. https://doi.org/10.1080/10867651.2003.10487593
arXiv:https://doi.org/10.1080/10867651.2003.10487593

[59] Hang Qiu, Po-Han Huang, Namo Asavisanu, Xiaochen Liu, Kon-
stantinos Psounis, and Ramesh Govindan. 2022. AutoCast: Scalable
Infrastructure-Less Cooperative Perception for Distributed Collabora-
tive Driving. In Proceedings of the 20th Annual International Conference
on Mobile Systems, Applications and Services (Portland, Oregon) (Mo-
biSys ’22). Association for Computing Machinery, New York, NY, USA,
128–141. https://doi.org/10.1145/3498361.3538925

[60] D. Ramasamy, S. Venkateswaran, and U. Madhow. 2012. Compressive
adaptation of large steerable arrays. In 2012 Information Theory and
Applications Workshop. 234–239.

[61] D. Ramasamy, S. Venkateswaran, and U. Madhow. 2012. Compressive
tracking with 1000-element arrays: A framework for multi-Gbps mm
wave cellular downlinks. In 2012 50th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). 690–697.

[62] M. E. Rasekh and U. Madhow. 2018. Noncoherent compressive chan-
nel estimation for mm-wave massive MIMO. In 2018 52nd Asilo-
mar Conference on Signals, Systems, and Computers. 889–894. https:
//doi.org/10.1109/ACSSC.2018.8645127

[63] Francesco Raviglione, Marco Malinverno, Stefano Feraco, Giuseppe
Avino, Claudio Casetti, Carla Fabiana Chiasserini, Nicola Amati, and
Joerg Widmer. 2021. Experimental Assessment of IEEE 802.11-Based
V2I Communications. In Proceedings of the 18th ACM Symposium on

https://doi.org/10.1109/SECON55815.2022.9918162
https://doi.org/10.1109/SECON55815.2022.9918162
https://doi.org/10.1145/3452296.3472924
https://doi.org/10.1145/3452296.3472924
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.1109/LWC.2019.2899571
https://doi.org/10.1109/LWC.2019.2899571
https://doi.org/10.1145/1999320.1999327
https://doi.org/10.1145/1999320.1999327
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/8.486303
https://doi.org/10.1109/WNCMF.1994.529141
https://doi.org/10.3390/s150820779
https://doi.org/10.1109/8.18706
https://doi.org/10.1109/8.18706
https://doi.org/10.1109/COMSNETS.2017.7945351
https://elib.dlr.de/124092/
https://doi.org/10.1109/JSTSP.2016.2520899
 https://www.way.com/blog/height-of-a-car-and-why-it-matters/#:~:text=The%20average%20car%20in%20the%20U.S%20is%20between%20five%20and%20six%20feet%20high&text=But%20when%20driving%20a%20vehicle,above%20the%20maximum%20passable%20height
 https://www.way.com/blog/height-of-a-car-and-why-it-matters/#:~:text=The%20average%20car%20in%20the%20U.S%20is%20between%20five%20and%20six%20feet%20high&text=But%20when%20driving%20a%20vehicle,above%20the%20maximum%20passable%20height
 https://www.way.com/blog/height-of-a-car-and-why-it-matters/#:~:text=The%20average%20car%20in%20the%20U.S%20is%20between%20five%20and%20six%20feet%20high&text=But%20when%20driving%20a%20vehicle,above%20the%20maximum%20passable%20height
 https://www.way.com/blog/height-of-a-car-and-why-it-matters/#:~:text=The%20average%20car%20in%20the%20U.S%20is%20between%20five%20and%20six%20feet%20high&text=But%20when%20driving%20a%20vehicle,above%20the%20maximum%20passable%20height
 https://www.openstreetmap.org 
https://doi.org/10.1145/3274783.3274852
https://doi.org/10.1080/10867651.2003.10487593
http://arxiv.org/abs/https://doi.org/10.1080/10867651.2003.10487593
https://doi.org/10.1145/3498361.3538925
https://doi.org/10.1109/ACSSC.2018.8645127
https://doi.org/10.1109/ACSSC.2018.8645127


ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Ahmad Kamari, Yoon Chae, Parth Pathak

Performance Evaluation of Wireless Ad Hoc, Sensor, &amp; Ubiquitous
Networks (Alicante, Spain) (PE-WASUN ’21). Association for Comput-
ing Machinery, New York, NY, USA, 33–40. https://doi.org/10.1145/
3479240.3488506

[64] Guillem Reus-Muns, Batool Salehi, Debashri Roy, Tong Jian, Zifeng
Wang, Jennifer Dy, Stratis Ioannidis, and Kaushik Chowdhury. 2021.
Deep Learning on Visual and Location Data for V2I mmWave Beam-
forming. In 2021 17th International Conference on Mobility, Sensing and
Networking (MSN). 559–566. https://doi.org/10.1109/MSN53354.2021.
00087

[65] Batool Salehi, Mauro Belgiovine, Sara Garcia Sanchez, Jennifer Dy,
Stratis Ioannidis, and Kaushik Chowdhury. 2020. Machine Learning
on Camera Images for Fast mmWave Beamforming. In 2020 IEEE 17th
International Conference on Mobile Ad Hoc and Sensor Systems (MASS).
338–346. https://doi.org/10.1109/MASS50613.2020.00049

[66] Batool Salehi, Jerry Gu, Debashri Roy, and Kaushik Chowdhury.
2022. FLASH: Federated Learning for Automated Selection of High-
band mmWave Sectors. In IEEE INFOCOM 2022 - IEEE Conference
on Computer Communications. 1719–1728. https://doi.org/10.1109/
INFOCOM48880.2022.9796865

[67] Lavanya Sharan, Ruth Rosenholtz, and Edward Adelson. 2009. Material
perception: What can you see in a brief glance? Journal of Vision 9, 8
(2009), 784–784.

[68] Daniel Steinmetzer, Daniel Wegemer, Matthias Schulz, Joerg Widmer,
and Matthias Hollick. 2017. Compressive Millimeter-Wave Sector Selec-
tion in Off-the-Shelf IEEE 802.11ad Devices. Association for Computing
Machinery, New York, NY, USA, 414–425. https://doi.org/10.1145/
3143361.3143384

[69] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vi-
jaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin
Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei
Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi,
Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.
2020. Scalability in Perception for Autonomous Driving: Waymo Open
Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

[70] Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, and Kyu-Han Kim. 2018.
Towards Scalable and Ubiquitous Millimeter-Wave Wireless Networks.
In Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking (New Delhi, India) (MobiCom ’18). As-
sociation for Computing Machinery, New York, NY, USA, 257–271.
https://doi.org/10.1145/3241539.3241579

[71] Sanjib Sur, Vignesh Venkateswaran, Xinyu Zhang, and Parmesh
Ramanathan. 2015. 60 GHz Indoor Networking through Flexible
Beams: A Link-Level Profiling. In Proceedings of the 2015 ACM SIG-
METRICS International Conference on Measurement and Modeling of
Computer Systems (Portland, Oregon, USA) (SIGMETRICS ’15). As-
sociation for Computing Machinery, New York, NY, USA, 71–84.
https://doi.org/10.1145/2745844.2745858

[72] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. 2015. Going Deeper With Convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[73] Alexandru Telea. 2004. An Image Inpainting Technique Based
on the Fast Marching Method. Journal of Graphics Tools 9,
1 (2004), 23–34. https://doi.org/10.1080/10867651.2004.10487596
arXiv:https://doi.org/10.1080/10867651.2004.10487596

[74] Aysim Toker, Qunjie Zhou, Maxim Maximov, and Laura Leal-Taixe.
2021. Coming Down to Earth: Satellite-to-Street View Synthesis for
Geo-Localization. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 6488–6497.

[75] Ries Uittenbogaard, Clint Sebastian, Julien Vijverberg, Bas Boom,
Dariu M. Gavrila, and Peter H.N. de With. 2019. Privacy Protection

in Street-View Panoramas Using Depth and Multi-View Imagery. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[76] Song Wang, Jingqi Huang, and Xinyu Zhang. 2020. Demystify-
ing Millimeter-Wave V2X: Towards Robust and Efficient Directional
Connectivity under High Mobility. In Proceedings of the 26th An-
nual International Conference on Mobile Computing and Networking
(London, United Kingdom) (MobiCom ’20). Association for Comput-
ing Machinery, New York, NY, USA, Article 51, 14 pages. https:
//doi.org/10.1145/3372224.3419208

[77] Song Wang, Jingqi Huang, Xinyu Zhang, Hyoil Kim, and Sujit Dey.
2020. X-Array: Approximating Omnidirectional Millimeter-Wave
Coverage Using an Array of Phased Arrays. In Proceedings of the
26th Annual International Conference on Mobile Computing and Net-
working (London, United Kingdom) (MobiCom ’20). Association for
Computing Machinery, New York, NY, USA, Article 5, 14 pages.
https://doi.org/10.1145/3372224.3380882

[78] Lili Wei, Qian Li, and GengWu. 2017. Exhaustive, Iterative and Hybrid
Initial Access Techniques in mmWave Communications. In 2017 IEEE
Wireless Communications and Networking Conference (WCNC). 1–6.
https://doi.org/10.1109/WCNC.2017.7925666

[79] E. WEISZFELD. 1937. Sur le point pour lequel la Somme des distances
de <i>n</i> points donn&eacute;s est minimum. Tohoku Mathematical
Journal, First Series 43 (1937), 355–386.

[80] Timothy Woodford, Xinyu Zhang, Eugene Chai, Karthikeyan Sun-
daresan, and Amir Khojastepour. 2021. SpaceBeam: LiDAR-Driven
One-Shot MmWave Beam Management. In Proceedings of the 19th
Annual International Conference on Mobile Systems, Applications, and
Services (Virtual Event, Wisconsin) (MobiSys ’21). Association for Com-
puting Machinery, New York, NY, USA, 389–401. https://doi.org/10.
1145/3458864.3466864

[81] Jianxiong Xiao and Long Quan. 2009. Multiple view semantic segmen-
tation for street view images. In 2009 IEEE 12th International Confer-
ence on Computer Vision. 686–693. https://doi.org/10.1109/ICCV.2009.
5459249

[82] Erich Zöchmann, Ke Guan, and Markus Rupp. 2017. Two-ray models
in mmWave communications. In 2017 IEEE 18th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC).
1–5. https://doi.org/10.1109/SPAWC.2017.8227681

https://doi.org/10.1145/3479240.3488506
https://doi.org/10.1145/3479240.3488506
https://doi.org/10.1109/MSN53354.2021.00087
https://doi.org/10.1109/MSN53354.2021.00087
https://doi.org/10.1109/MASS50613.2020.00049
https://doi.org/10.1109/INFOCOM48880.2022.9796865
https://doi.org/10.1109/INFOCOM48880.2022.9796865
https://doi.org/10.1145/3143361.3143384
https://doi.org/10.1145/3143361.3143384
https://doi.org/10.1145/3241539.3241579
https://doi.org/10.1145/2745844.2745858
https://doi.org/10.1080/10867651.2004.10487596
http://arxiv.org/abs/https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1145/3372224.3419208
https://doi.org/10.1145/3372224.3419208
https://doi.org/10.1145/3372224.3380882
https://doi.org/10.1109/WCNC.2017.7925666
https://doi.org/10.1145/3458864.3466864
https://doi.org/10.1145/3458864.3466864
https://doi.org/10.1109/ICCV.2009.5459249
https://doi.org/10.1109/ICCV.2009.5459249
https://doi.org/10.1109/SPAWC.2017.8227681

	Abstract
	1 Introduction
	2 Motivation
	3 System Overview
	4 3D Material Maps
	4.1 Material Segmentation and Identification
	4.2 Creating 3D Material Map

	5 V2V Comm. using 3D Material Maps
	5.1 Environment-driven Raytracing
	5.2 Restricted Beamsearching

	6 Evaluation
	6.1 Street View Material Identification
	6.2 mmWave Networking with 3D Material Maps

	7 Related Work
	8 Conclusion and Discussion
	References

