
74

Synthetic Smartwatch IMU Data Generation from In-the-wild ASL
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The scarcity of training data available for IMUs in wearables poses a serious challenge for IMU-based American Sign Language 
(ASL) recognition. In this paper, we ask the following question: can we “translate” the large number of publicly available, 
in-the-wild ASL videos to their corresponding IMU data? We answer this question by presenting a video to IMU translation 
framework (Vi2IMU) that takes as input user videos and estimates the IMU acceleration and gyro from the perspective of 
user’s wrist. Vi2IMU consists of two modules, a wrist orientation estimation module that accounts for wrist rotations by 
carefully incorporating hand joint positions, and an acceleration and gyro prediction module, that leverages the orientation 
for transformation while capturing the contributions of hand movements and shape to produce realistic wrist acceleration 
and gyro data. We evaluate Vi2IMU by translating publicly available ASL videos to their corresponding wrist IMU data and 
train a gesture recognition model purely using the translated data. Our results show that the model using translated data 
performs reasonably well compared to the same model trained using measured IMU data.
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1 INTRODUCTION
With the increasing popularity of smartwatches and fitness trackers, developing IMU-based American Sign 
Language (ASL) recognition solutions will be highly valuable to the deaf and hard-of-hearing (DHH) community. 
Such solutions can enable human-computer interaction applications in home assistant systems (such as interacting 
with smart speakers), ASL-to-text transcription in video conferencing, etc. In addition, they can also bridge the 
communication gap between ASL speakers and non-ASL speakers. While the potential remains significant, the 
amount of research and progress in wearable IMU based ASL recognition appears relatively limited [1, 2] compared 
to camera-based solutions [3–10] which are extensively studied. Camera-based solutions incur privacy concerns 
as they need continuous monitoring and also suffer in performance in poor lighting conditions. Because of their 
continuous monitoring, camera-based solutions can also capture information about other humans who are not
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Table 1. Comparison of Vi2IMU with state-of-the-art.

System Task Method Video
diversity

3 axis
gyro

3 axis
accelerometer

No. of
classes

IMUTube [11, 12]

Human
activity

recognition

Trajectory based High
Yes Yes 13

CNN based
framework [13] No Yes 12

Let there
be IMU [14] Generative Low No Yes 10

cVGAN [15] Yes N/A
Deep Inertial
Poser [16]

Pose
reconstruction Trajectory based Low No Yes N/A

zeroNet [11] ASL
recognition Trajectory based Low No Yes 50

Vi2IMU Medium - High Yes Yes 70

the intended users, which raises further privacy concerns. In contrast, IMU-based solutions are portable, low-cost,
on-body, and do not require continuous camera-like monitoring. An important factor hindering research and the
adoption of IMU-based solutions is the lack of large public datasets. Camera-based solutions take advantage of
in-the-wild videos on streaming platforms like YouTube and scale the ASL recognition capability to orders of
magnitude higher than existing IMU-based solutions. Collecting and labeling a large amount of IMU data require
significant human efforts, slowing down the research and development. In this paper, we ask the following
question: Can we “translate” the large amount of publicly available, in-the-wild ASL videos to their corresponding
IMU representation? If yes, the translated IMU data can then be directly used for research and development of
IMU-based ASL recognition solutions.

This paper attempts to address the ASL data availability problem using synthetic IMU data generation through
modality translation. We present a novel framework (referred to as Vi2IMU) that takes as input publicly available
ASL videos and estimates the IMU acceleration and rotation from the perspective of the user’s wrist joint. The
predicted IMU data can be thought of as the acceleration and gyro data that would have been observed by the
IMU on the user’s smartwatch, fitness tracker, or any other wrist-worn wearable device. Vi2IMU is developed on
our insight that carefully tracking different hand and arm joints in videos can enable us to estimate displacement
and orientation of the wrist. These combined with necessary transformations can be used to derive a model that
can estimate wrist-based IMU’s acceleration and gyro. The translated acceleration and gyro data obtained using
Vi2IMU can then be directly used for research and development.

Understanding its importance, some recent works [11, 14, 17, 18] have attempted to solve the problem of
video to IMU translation. Generative methods proposed in [14, 18] apply machine learning to learn a function
that can derive IMU data from videos. On the other hand, trajectory-based methods [11–13, 16, 17, 19] first
determine 3D joint positions from videos and then use forward kinematics to estimate joint orientations. The
obtained orientation values are used to transform the 3D joint positions to IMU’s frame-of-reference. The second
order derivative of the transformed joint positions is then used for computing acceleration, while the first order
derivative is used for computing gyro (angular velocity).
While the existing works have made important contributions, there are various limitations discussed below

that render them unsuitable for translating data for wrist-worn IMUs which are key to ASL recognition. Table 1
provides a detailed comparison.
(1) A majority of existing work [12–15, 19] focuses on human activity recognition tasks. In contrast to ASL

gestures, human activities involve the movement of the entire body’s joints. This means that synthetic IMU
data is created for multiple body joints where an error in IMU estimation for one joint can be compensated
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by another IMU at a different body joint. In comparison, estimating the data for a single wrist-worn IMU
requires fine-grained prediction of orientation and hand movements.

(2) Utilizing forward kinematics (as proposed in [12, 16, 17] for body joints) for wrist orientation estimation
does not account for wrist rotations when resultant orientation change is not due to wrist displacement.
While ignoring wrist rotations might not lead to significant errors in human activity recognition, such
errors can lead to very poor performance in ASL recognition. For example, the major difference between
two ASL signs Mom[20] and Color[21] is primarily the orientation of the wrist while the remaining arm
joint movements are similar.

(3) Existing methods are not designed to account for acceleration changes that are observed at the wrist due to
hand and finger movements. They are not capable of capturing the subtle accelerations that are observed
at wrist when user performs hand/finger movements (e.g., open and close fist or change hand shape).

(4) Lastly, in-the-wild ASL videos can exhibit a large amount of diversity in terms of users, video backgrounds,
lighting conditions, etc. Existing work [11] performs video to IMU translation for a finger-worn IMU,
however, the approach was demonstrated on videos collected in controlled settings [22] with very little
diversity.

As shown in Table 1, currently there exist no solution that can generate 3-axis acceleration and 3-axis gyro data
for a wrist-worn IMU from hundreds of in-the-wild ASL videos.
We present Vi2IMU, a video to wrist IMU translation technique that enables us to create synthetic IMU

acceleration data for wrist wearables directly from a diverse set of videos with the ability to scale to a large
number of ASL gestures. Vi2IMU is built as a modular framework with two important modules of (i) orientation
estimation and (ii) acceleration and gyro estimation. We use existing well-studied solutions to extract hand and
arm joint positions from videos. Our orientation estimation module uses them to estimate the wrist orientation
with respect to the camera’s frame-of-reference. The orientation along with the displacement and positions of the
hand and arm joints are then used for acceleration and gyro estimation. While the acceleration can be directly
calculated by taking second order derivative of wrist displacement, such an approach can be very inaccurate as
it ignores the wrist rotations and simply considers translational movements. Our key insight is that carefully
accounting for hand joints in orientation and acceleration estimation enables us to capture wrist rotations as well
as fine-grained hand/finger motion related accelerations observed at the wrist. We now present an overview of
challenges and our solutions for both modules.
(1) Wrist orientation estimation. We demonstrate that incorporating hand joint positions along with wrist
and arm joints can enable us to accurately estimate wrist rotations. This significantly improves wrist orientation
estimation which would otherwise simply account for only arm movements resulting from gestures. We find
that leveraging hand joint position information is not straightforward because in-the-wild ASL videos suffer
from a range of issues including motion blur, poor lighting, etc. that result in inaccurate hand joint position
estimation. We address this challenge by proposing a frame grouping strategy that groups together frames with
common hand shape while ensuring that each group has one or more frames without motion blur. We then
design a bi-directional LSTM based model that takes the frame groups and predicts the wrist orientation for each
frame even when it contains motion blur by leveraging hand shape and joint information from other frames
without blur in the group. This results in a continuous and highly accurate orientation estimation that can then
be leveraged for acceleration and gyro predictions.
(2) Acceleration and gyro prediction. Through investigation of a large number of in-the-wild ASL videos,
we find that simply using the displacement of the wrist joint (after transforming using orientation) is far from
sufficient to accurately predict acceleration. This is because the movements of hand joints add a non-trivial
amount of acceleration to the acceleration observed at the wrist. For example, when a user opens and closes
her fist while keeping the wrist stationary, the movement of wrist muscles still results in acceleration. We also
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find that even simply changing the hand shape while performing the same wrist and arm movement results in
different acceleration observed at the wrist. These challenges make the direct computation of acceleration from
wrist displacement highly inaccurate. Instead, we propose an LSTM-based multitask deep learning model that
tries to learn the temporal dependencies between the movements of arm, wrist, and hand joints and the resultant
acceleration. In doing so, the model pays attention to hand joint information when wrist displacement values are
not significant and considerable rotational movements are perceived through gyro estimates. The two tasks then
output the predicted acceleration and gyro for the wrist-worn IMU.
Vi2IMU evaluation. We extensively evaluate both modules of Vi2IMU individually as well as the entire
end-to-end video to IMU translation.

For training and evaluating individual modules (orientation and acceleration/gyro), we collect our own dataset
with 5 subjects and 1.6M frames. Our evaluation shows that (1) our orientation module achieves an orientation
error (rotation angle between predicted and ground truth rotation matrices) of 12.49◦, (2) the acceleration
prediction achieves an average mean absolute error of 0.54𝑚/𝑠2 for three axes, (3) the gyro prediction achieves a
average mean absolute error of f 0.39 𝑟𝑎𝑑𝑖𝑎𝑛/𝑠 for three axes, and (4) compared to manual computation from
displacement, Vi2IMU’s models achieve on average 20.86% improvement in acceleration prediction, significantly
advancing the state-of-the-art through careful accounting of impacts from hand joints and shape.
Furthermore, we train an IMU ASL gesture recognition model purely from IMU wrist acceleration and gyro

data translated from videos without any collected IMU training data. We use a publicly available, in-the-wild ASL
video dataset (MS-ASL [7]) with a large diversity in terms of users, video background, lighting conditions, etc., and
calculate the wrist acceleration/gyro from videos. The videos in MS-ASL were curated from YouTube and labeled
manually. We evaluate the accuracy of the recognition model using test IMU samples and find that our framework
can accurately produce wrist IMU acceleration/gyro data that can be used to avoid laborious data collection efforts.
Furthermore, we show that augmenting the translated data by incorporating gesture-specific and subject-specific
attributes significantly improves performance. For 50 gestures, the model trained using real, measured data
achieves a Top-1 accuracy of 91.6% while the model trained using our translated data achieves a Top-1 accuracy
of 84.1%. With gesture-specific and subject-specific data augmentation, for 50 gestures, the Top-1 accuracies
are 90.7% and 93.26% respectively. A model trained using real, measured IMU data for 70 gestures achieves
Top-1, Top-3, and Top-5 accuracies of 86%, 100%, and 100%, while the same model trained using our translated
IMU data achieves 66.6%, 86.2%, and 93.4% accuracies. For 70 gestures, with gesture-specific augmentation the
Top-1 accuracy is 77.3%. This shows that Vi2IMU can accurately produce synthetic IMU acceleration and gyro
data from in-the-wild videos with diverse conditions. We have made our translated IMU data (plots and raw
acceleration and gyro data) from MSASL videos for 70 gestures along with corresponding measured IMU data
available anonymously. Please refer to Appendix A.
We summarize our contributions as follows:

(1) We address the challenges in wrist orientation estimation by proposing a frame grouping strategy that is
complemented by a bi-directional LSTM-based deep learning architecture that estimates wrist orientation
while accounting for the inaccuracies in hand joint estimations.

(2) We demonstrate the importance of hand joints and the impact of hand shape in wrist acceleration estimation.
We propose an LSTM-based multitask deep learning model that jointly estimates acceleration and gyro by
learning common feature representations.

(3) We extensively evaluate different modules using a large amount of video and IMU data. We also translate a
publicly available in-the-wild ASL video dataset to corresponding IMU data and evaluate the accuracy of
gesture recognition using a model trained purely using the translated IMU data. Results suggest that our
proposed translation framework is practically viable and useful in different applications.
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2 SYSTEM OVERVIEW

Video frames Openpose
2D wrist and arm 

joint and hand 
joint positions

3D displacement estimation

Wrist and arm joint 
displacement in 3D

Wrist orientation estimation

Wrist orientation in 
camera’s frame-of-reference

Wrist IMU acceleration 
& gyro estimation

Wrist IMU acceleration & gyro

IMU acceleration & gyro 
based ASL recognition 

model
Test IMU samples

Training

Classification

Fig. 1. Vi2IMU overview.

Fig. 1 shows the overview of Vi2IMU. First, we use a state-of-the-art 2D pose estimation model - OpenPose
[23] - to extract the 2D hand (21 joints) and arm joints (3 joints) from the video. OpenPose uses part affinity fields
to estimate the joint positions on an image and has been shown to achieve very good performance on several
benchmark datasets [24, 25]. Next, the 3D displacement estimation module takes the extracted 2D arm joints and
estimates the corresponding 3D displacement with respect to the camera. We use an existing 2D to 3D regression
model [26] which utilizes a residual architecture for 3D displacement estimation.

The 2D hand and arm joint positions are also input to the wrist orientation estimation module which estimates
the wrist orientation with respect to the camera’s frame-of-reference. The wrist orientation estimation module
utilizes a bi-directional LSTM based architecture that enables orientation estimation even for frames with missing
hand joints by leveraging the hand shape information from nearby frames with relatively more accurate hand
joint predictions. The 3D displacement and wrist orientation along with the 2D hand joint positions become
input to the wrist IMU acceleration & gyro estimation module that predicts the wrist IMU acceleration and gyro
(angular velocity). The wrist IMU acceleration & gyro estimation module utilizes an LSTM based multi-task deep
learning model that takes advantage of the correlation between acceleration and gyro to learn relevant feature
representations and scale for diverse gesture classes and their videos. The translated IMU acceleration and gyro
can be directly used for training IMU-specific ASL recognition models.

3 WRIST ORIENTATION ESTIMATION
While it should be possible to compute acceleration as a function of the obtained 3D displacements, we still cannot
do so as the displacement values are in the camera’s frame-of-reference, while the IMUs measure acceleration in
their local frame-of-reference. To address this, we need to transform the displacement values to IMU’s frame-of-
reference before computing acceleration. Such a transformation requires estimating the orientation of wrist-worn
IMU with respect to the camera as shown in Fig. 2a. Here, wrist orientation is nothing but the rotations required
to align the camera’s frame to that of IMU’s. Additionally, the estimated orientation can also be used to calculate
angular velocity (i.e., gyro).
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Fig. 2. (a) Transformation of displacement, (b) existing approaches and (c) our approach for orientation estimation

3.1 Accounting for Wrist Rotations
3.1.1 Limitations of existing solutions. We next consider two existing approaches that cannot be directly used for
wrist orientation estimation due to various limitations.

The first approach (similar to the one presented in [11] for finger orientation estimation) is to approximate one
of the IMU’s axes using the limb connecting two arm joints. We can approximate the Y-axis of the IMU (𝐼𝑦) using
the line joining the wrist and elbow joints as shown in Fig. 2b (Approach-1). Since we have the joint positions in
camera’s perspective, the angle between the line (𝐼𝑦) and the camera’s Y-axis (𝐶𝑦) can be treated as the one axis
orientation. The main limitation of this approach is that this only provides us with one orientation value, and we
cannot use this transform from the camera’s frame-of-reference to that of IMU’s.
Another approach would be is to create a kinematic chain comprising the shoulder, elbow, and wrist joints,

and utilize forward kinematics to estimate wrist orientation [17]. This is shown in Fig. 2b (Approach-2). Here, the
orientation of the wrist is estimated as a function of change in position of the different joints in the kinematic
chain. For example, when the user moves her arm up towards his head, there is rotational movement in the elbow
which can be detected by the change in displacement values along the camera’s Y-axis.

Both the above-mentioned approaches can work for wrist-orientation estimation when the considered gestures
primarily involve arm joint movements. However, when a gesture only involves hand joints movement with
wrist orientation change, the methods perform very poorly. For example, when a user rotates her wrist (as shown
in Fig. 2b using a blue arrow) along the IMU’s Y-axis, there is no considerable displacement of the arm joints,
indicating no orientation change. As the forward kinematic chain estimates orientation as a function of change
in positions of the joints in the chain, the corresponding orientation change will not be registered. Such gestures
are common in ASL. In fact, wrist rotation is considered to be an important phonological property (a unique
underlying characteristic that is common across many gestures) as per the ASL-LEX database [27]. Out of 2000
signs included in the database, approximately 20% of them are categorized under gestures with wrist rotations.

3.1.2 Understanding the role of hand joints. We claim that hand joints play an important role in determining
wrist orientation especially in the presence of wrist rotations. As shown in Fig. 2c, as the user rotates her wrist,
one important observable change in the body is the change in hand joint positions. This means that it should
be possible to model the orientation change corresponding to wrist rotations (along the IMU’s Y-axis) just as a
function of hand joint positions. However, a critical problem in doing so is that publicly available gesture videos
often have poor lighting and high amount of motion blur. This makes it extremely difficult to recover hand joint
positions on a large number of frames. Fig. 3a shows a subset of frames for two ASL gestures. As it can be clearly
seen, the hand joint positions are hard to identify in some of the frames due to poor lighting and motion blur.
This results in low confidence hand joint estimates which we refer to as missing hand joints.
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Fig. 3. Motion blur and hand joint estimation.

3.1.3 Tackling missing hand joints. In addressing the issue of missing hand joints due to motion blur, we make
two observations: (1) We note that although the hand joint positions vary in subsequent frames, the hand shape
remains consistent over at least a sequence of frames. We analyze over 895 videos of 80 gesture classes in the
MS-ASL dataset [7] and find that although arm position can change, the hand shape remains consistent typically
for the duration of 200 to 400 ms duration, the hand shape can change due to minor variations, transitions to a
different hand shape (for gestures with multiple hand shapes such as [28]) or at the start or end of the gesture.
(2) We also observe that frames with missing hand joints vary in terms of the number of joints that are missing
and they are either preceded or followed by frames that have less motion blur and more hand joints visible. For
example, in the first row of Fig. 3a, the hand joints are not completely visible in the first two frames. However,
the visibility improves in subsequent frames and all the joints are clearly visible in the last frame. To further
validate this, we estimate the number of hand joints missing over different frames for 100 gestures (1.4 M frames)
in MSASL. Fig. 3b shows the number of frames in the dataset with different percentages of hand joints missing.
We find that for 64.32% of the frames, the amount of hand joints missing is less than 50%. These are frames with
less motion blur and we will refer to them as key frames. Fig. 3c shows the distribution of the number of frames
with more than 50% hand joints missing between two key frames i.e., the inter key frame interval. The inter key
frame interval is computed over the frames for 895 gesture videos. We find that the average inter-key frame
interval is 3.24 frames. This means that in a group of frames, a frame with zero hand joints will be close to a key
frame either before or after it in the group.

3.2 Orientation with Key and Delta Frames
We leverage the observations we made above as follows. First, we categorize frames based on the number of
missing hand joints. Along with the 2D joint positions, the OpenPose model also provides a confidence score
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Fig. 4. Incorporating information from key frames into the delta frames for orientation estimation.

for different joints. Let 𝐸 𝑗

𝑓
be the position estimate for joint 𝑗 in frame 𝑓 . Then the confidence score (𝑃 𝑗

𝑓
) is the

probability that the estimate for the joint 𝑗 in frame 𝑓 is correct. Typically, frames with poor lighting or motion
blur yield lower confidence scores for joint estimates. We use the confidence score to determine the validity
of the obtained joint positions. Any joint with 𝑃

𝑗

𝑓
< 𝜂 (a predefined threshold value) is considered invalid and

treated as a missing joint. Frames that have more than 𝜖 hand joints missing are categorized as “delta” frames
and the remaining are categorized as “key” frames. Fig. 4 shows the categorization of frames into key and delta
for four frames. Our insight here is that we can export the knowledge in terms of the hand shape obtained from
key frames to estimate the orientation for delta frames as shown in Fig. 4. However, incorporating the knowledge
from key frames and combining it with the existing arm joint information in estimating the orientation for delta
frames is nontrivial. We solve this challenge by designing a model that facilitates the transfer of knowledge
between key and delta frames and estimates orientation as a function of the combined knowledge.
Fig. 5 shows our wrist orientation estimation model. The model takes as input a group of frames at a time

where each frame consists of 2D arm and hand joint positions corresponding to it. We divide all frames of the
video such as that there is at least one key frame in each group. This will enable the delta frames to learn the hand
shape information from the key frames within that group as the model runs. We utilize a bi-directional LSTM
architecture where two LSTM cells are used for modeling the input. We choose the bi-directional modelling as a
key frame can either precede or follow a delta frame. We empirically choose 𝜖 and 𝜂 to 50% and 25% respectively
for categorizing the frames.

Before the inputs are passed to the LSTM cells, they are projected to higher dimensions through a linear block.
The linear block is comprised of a linear layer followed by batch normalization for normalizing the input, dropout,
and Rectified Linear Units (ReLU) for activation. ReLU activation function is used for avoiding the vanishing
gradient problem [29] and batch normalization is used for stabilizing the input allowing for faster convergence.
We utilize 2 layers of LSTM cells both for forward and backward LSTM with a dropout layer in between. The
output of the forward and backward LSTM cells is concatenated and passed to another linear block which is
comprised of two linear layers with dropout, batch normalization, and ReLU for activation. For the linear layers
and LSTM cells, we use 1024 hidden units and set the dropout value to 0.5. We use Means Squared Error (MSE) as
the loss function.

3.2.1 Ground truth for wrist orientation in camera’s frame of reference. We need the ground truth wrist IMU
orientation with respect to the camera’s frame-of-reference in practice to train the supervised ML model. We
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obtain this ground truth as follows: we first measure the camera’s orientation with the respect to the earth’s
frame-of-reference (let’s call it𝑂𝐶

𝐸
) by aligning the frame of an (additional) IMU with the camera. We also measure

the orientation of the wrist-worn IMU in the earth’s frame-of-reference (referred as 𝑂𝑊
𝐸
). The rotation matrix

𝑅 can be calculated between 𝑂𝐶
𝐸
and 𝑂𝑊

𝐸
. Furthermore, let 𝑂𝑊

𝐶
be the orientation of wrist IMU in camera’s

frame-of-reference. We are interested in calculating 𝑂𝑊
𝐶

from 𝑂𝐶
𝐸
and 𝑂𝑊

𝐸
, both of which are measured. The

inverse of 𝑅 can be used to calculate the 𝑂𝑊
𝐶

as 𝑂𝑊
𝐶

= 𝑅−1𝑂𝑊
𝐸
. We note that this ground truth calculation requires

the camera’s orientation in the earth’s frame-of-reference. However, this is only needed during the training of the
orientation estimation model. When we use the model for orientation estimation for the in-the-wild videos, we do not
need the camera’s orientation. Our scheme assumes that the camera’s orientation is not available while translating
videos to IMU data.

4 WRIST ACCELERATION & GYRO ESTIMATION

4.1 Impact of Hand Shape and Movements
After the calculation of displacement that accounts for IMU’s orientation (i.e., in IMU’s frame-of-reference),
we can calculate the acceleration values by taking the second order derivative of the subsequent displacement
samples. Similarly, we can take the first order derivative of the subsequent orientation values and obtain the
angular velocity (gyro). For both first and second order derivatives, we can use finite differences following
the prior works [11, 30, 31]. Fig. 6 compares the computed acceleration and gyro values with measured IMU
acceleration and gyro for the gesture No [32]. We observe that while there are visible similarities in pattern
between the computed and measured values, there are still clear gaps and the gaps are more pronounced in
acceleration than gyro. Apart from the pattern, there is also a difference in the actual numeric values.
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We claim that there are two underlying reasons due to which the computed and measured values are different.
(1) Contributions from hand/finger movements. First, we note that the difference between computed and
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Fig. 6. Comparing manually computed and measured acceleration and gyro for an ASL gesture.

corresponding measured acceleration values is not consistent for different parts of the gestures. The samples
in the highlighted area (marked in red Fig. 6a) for computed acceleration values are relatively lower than their
respective measured acceleration values (marked in red Fig. 6c). The reason behind this difference is that the
highlighted part of the gesture is only comprised of finger movements while the other not highlighted parts are
comprised of arm movements. As established by multiple prior works [33, 34], IMUs also capture acceleration
values corresponding to finger movements because of the connection between finger bones and muscles in the
forearms. The computed acceleration does not account for the impact of finger movements in the acceleration as
they are directly calculated from wrist displacements only.
(2) Same wrist movements but different hand shapes.
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Fig. 7. Impact of hand shape on observed acceleration.
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As IMUs measure acceleration as a function of change in capacitance observed along a damp suspended mass,
they are also impacted by the mass of the hand as observed in prior works [35, 36]. This means that the hand
shape and its relative position to the wrist should have an observable impact on the measured acceleration while
performing a gesture. We claim that just changing the shape of the hand in a gesture without any other change
in wrist and arm movements should change the acceleration values observed at the wrist. We verify the claim by
picking a set of gestures that vary only in the hand shape but have the same wrist and arm joint movements and
comparing their acceleration values. Fig. 7a shows three such gestures and their corresponding hand shapes.
The three gestures Cousin, Green, and Blue involve the same wrist rotations with different hand shapes. To
compare the three gestures acceleration values, we use statistical features (first four movements - mean, variance,
skewness, and kurtosis) that have been used in prior works for IMU-based gesture classification [33, 37]. Fig. 7b
shows the acceleration statistics for the three gestures. The statistics were calculated for 100 instances per gesture
(5 users each performing 20 instances per gesture). We compute an average over the three axis and normalize
them for visual comparison. From Fig. 7b, it is clear that the statistics for the gesture are different. This difference
in acceleration is due to the difference in the hand shapes given that all other characteristics of the three gestures
remain the same. This clearly demonstrates the impact of hand shapes on the measured acceleration values and
reaffirms the need to incorporate hand joint information in acceleration estimation.

4.2 Learning to Estimate Accel. & Gyro
Based on the above mentioned two reasons, our aim is to find a function that can take the transformed 3D
wrist displacement values and incorporate the critically important 2D hand joint and shape information while
computing the acceleration. Efforts towards deriving such a function is further complicated by the challenge
of missing hand joints as we explained in Section 3. Given the complexity, a possible approach would be to
use supervised learning where we can train a model to learn the function by supervising with the measured
acceleration values. Care is needed in designing such a model as these models can overfit and disregard features
crucial to the task. Here, we find an opportunity that enables us to address these challenges of overfitting by
incorporating the gyro information during training.

4.2.1 Multitask learning of acceleration and gyro. Multitask learning [38] is a learning technique designed for
simultaneous learning of multiple related tasks. By exploiting the commonality and differences across the related
tasks, it generalizes well for all the tasks. Multitask learning forces the tasks to focus attention on only the relevant
feature representations [39]. Specifically, in our case, it enables the acceleration model to pay attention to hand
joint information when wrist displacement values are not significant. This could happen in gestures with wrist
twists without considerable wrist displacement [40]. Here, training with gyro could assist the acceleration model
in understanding if the acceleration is due to a rotation movement of wrist or due to change in hand shape (i.e.,
finger and hand movement). Additionally, the complementary nature of acceleration and gyro (they capture
different representations of the same movement) help us reduce the overfitting. Fig. 8 shows the proposed model.
Our model consists of two tasks, one for acceleration estimation and another for gyro estimation. The tasks
share a common feature representation layer which is comprised of a linear layer followed by two layers of
LSTM cells with dropout in between. The LSTM cells model the time-dependent nature of acceleration and gyro
estimation. Additionally, LSTMs because of their ability to model short-term and long-term dependencies also
help in addressing the problem of missing hand joints by incorporating the knowledge from key frames in the
estimations for delta frames as explained in the Section 3. Following the shared layers, we have task specific
layers for individual tasks. Each task specific layers is comprised of linear layers with batch normalization for
normalizing the inputs, followed by ReLU for activation. This is followed by linear layer for IMU acceleration
and gyro prediction. For both linear layers and LSTM cells we use 1024 hidden units and set the dropout to 0.5.
We train the model using the mean square error loss.
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Fig. 8. Our multitask learning model for acceleration and gyro prediction.

5 EVALUATION AND NUMERICAL RESULTS

5.1 Datasets, Training and Implementation
We evaluate the two modules of Vi2IMU individually, in series, and in an end-to-end video to IMU translation.
Table 2 and Fig. 10 summarize different datasets used, input and output for models, method of evaluation, and
corresponding training and testing data. As we detailed in Section 2, we extract the 2D joint positions for the body
and hand using openpose [23]. Following this, we use an existing 3D pose estimation model [26] for converting
the obtained 2D body key points. We retrain the 3D pose estimation models using our collected data for Vi2IMU
with only the upper body joint positions (with head as origin) to accommodate for the absence of lower body
joints in many existing in-the-wild ASL video datasets.

5.1.1 Vi2IMU dataset. Both orientation and acceleration/gyro estimation modules require a dataset that includes
videos, ground truth/measured 3D joint positions, and orientation, acceleration, and gyro of the wrist IMU. To the
best of our knowledge, there is no publicly available dataset that can provide all these. To address this problem,
we embark on our own data collection effort referred as Vi2IMU dataset. Our dataset uses Azure Kinect camera
Development Kit [41] and Google Pixel phones [42] with IMUs. We use Azure camera that provides RGB videos
and corresponding depth information, which is then subsequently processed using Azure body tracking model
[43] to estimate the 2D and 3D joint positions and displacement. We ask 5 subjects (the study is IRB approved) to
perform different arm and hand gestures. The Pixel phone is also attached to the user’s wrist to simultaneously
collect the IMU data. We pick a sequence of gestures involving arm and hand movements as cue videos. The
subjects are asked to perform the actions at varying speeds so that the model can learn acceleration as a function
of displacement change at different rates. We collect data from 5 subjects for approximately 16 hours resulting in
approximately 1.6M frames as summarized in Table 2.
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Table 2. Summary of Vi2IMU dataset used for module evaluation

Evaluation Dataset Input Output Training and Testing

M2: Wrist
orientation
estimation

Vi2IMU
2D arm and
hand joints
from videos

Orientation of wrist
IMU in camera’s
frame-of-reference

5 subjects, 1.6 M samples

1) 80% - 20%:
Training on 1.4M samples
Testing on 220K samples

2) Leave one out:
Training on 4 users’ data
Testing on 1 user data

M3: Wrist
acceleration

& gyro
estimation

Vi2IMU
3D arm joints,

2D hand joints and wrist
orientation

Wrist IMU
acceleration

& gyro

The orientation and accel/gyro estimation modules are trained using 1.4M frames (80% data) and corresponding
IMU data and tested with 220K (20% data) frames for 5 subjects. We also evaluate the modules in a “leave-one-out”
fashion where the model is trained on 4 users’ data and tested on the remaining user. We do this for all 5 users.

5.1.2 MS-ASL dataset for translating in-the-wild videos. For the final evaluation of Vi2IMU, we take an in-the-wild
ASL video dataset and convert the sign language gesture videos to corresponding wrist IMU and then train a sign
language gesture recognition model using the translated IMU data. The model is then tested with IMU gesture
samples (for the same gestures) collected by us. High accuracy in recognizing these gestures during the testing
indicates that our video to IMU translation framework performs well in producing wrist IMU data that matches
well with real measured data.

End-to-end
evaluation method

- Use pre-trained models to translate IMU acceleration and gyro from sign language gesture videos.
- Translate from videos for 70 gestures (with ≈ 72 subjects) and 20-25 video instances per gesture.
- Train a sign language recognition model using the translated IMU acceleration and gyro data.
- Use measured IMU test samples for 5 users to evaluate the recognition model.

Fig. 9. MS-ASL dataset: diversity of users, backdrop, lighting conditions, and part of user’s body visible in videos.

We use the MS-ASL dataset [7] which is a benchmark dataset proposed for word-level ASL recognition. We
pick 70 gestures from the dataset with 20-25 videos per gesture and convert them into IMU data. The dataset was
created by curating YouTube videos and manually labelling them. As seen in Fig. 9, the dataset is comprised of a
diverse set of users of different age groups and physical builds. The dataset is also diverse in terms of the video
resolution, backdrop, lighting conditions, user posture (sitting/standing), and part of the user’s body visible in the
videos. The video resolutions range from 360p to 1080p with approximately 35% videos having resolution lower
than 480p. There are 72 different subjects in our 70 gestures. Translating from such a diverse dataset should help
in addressing the user diversity problem inherent in IMU datasets. Fig. 10 shows the phonological properties
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of the chosen ASL signs. The signs include an approximately equal number of repetitive and non-repetitive
signs, 40% of them are one-handed, and 22% are with wrist twists. In repetitive signs, part of the sign is repeated
multiple times within the sign (like knocking movement repeated twice in knock-knock). Fig. 10 shows the
wrist movement type for the chosen ASL signs. Wrist movement type denotes the translational displacement of
the wrist while wrist twist denotes the rotational movement of the wrist. Here, 55% signs have straight wrist
movements, 18% involve curved wrist movements, 17% have no wrist movement, and the remaining ones have
circular wrist movements. The phonological properties and movement information were obtained from [27].
Once we translate the data, we use it for training an IMU sign gesture recognition model and test with the IMU
gesture samples collected by us.

Phonological property of 
gestures

No. of 
gestures

(out of 70)
Gesture involves a repetitive 

motion 34 

Gesture involves a wrist twist 16 
Gesture is one-handed 28 

Wrist movement 
type

No. of gestures
(out of 70)

Circular 6

Curved 13

Straight 39

None 12

Fig. 10. MS-ASL dataset: phonological properties and wrist movement type for the 70 signs considered.

5.1.3 Model implementation. All the proposed models are implemented using Pytorch [44] and optimized using
Adam optimizer [45]. The models are trained for 100 epochs, where one epoch is the time taken by the network
to perform one iteration of training (feed forward, compute the loss, and backpropagate the losses) on the
entire training set. We start with a learning rate of 0.001 and use an exponential weight decay to reduce the
learning rate beyond 75 epochs. We set the batch size to 24 for the orientation estimation model and 5 for the
acceleration/gyro estimation model. We pick the best model using the early stopping [46] approach, where
we use a validation set to evaluate the performance of the model every 3 epochs and stop at the point where
there is no observable improvement in performance on the validation set. All the models were trained using
NVIDIA Tesla K480 GPUs and the training time for the orientation model was approximately 3 hours and for the
acceleration/gyro estimation model was approximately 2.5 hours.

5.2 Orientation Estimation Results
5.2.1 Comparison models and error metric. We compare our orientation prediction model with two other models:
(1) Non-deep learning model: We use Ridge regression [47] trained using the same training data (Table 2) as a
baseline for comparison. Ridge regression utilizes linear least squares as the loss function in determining the
parameters and uses 𝐿2−norm for regularization. Regularizing with 𝐿2−norm constraints the parameter values
and has shown to achieve better generalization [48]. We use a regularization strength of 1 in training the model.
(2) Vi2IMU model without hand joints: To understand the impact of the hand joints, we train the proposed deep
learning model without hand joints and only with the arm joints (shoulder, elbow, and wrist). Comparing with
such a model should give some insight into the role that hand joints play in orientation estimation. Also, the
orientation values estimated by the model without hand joints (just arm joints) is similar to the orientation values
obtained through forward kinematics. We use mean absolute error (MAE) in degrees which gives the per-axis
orientation error highlighting the contributions in error along the different axes as the error metric. Let 𝑁 be the
number of test samples, then the MAE is given by𝑀𝐴𝐸 = (1/𝑁 )∑𝑁

𝑖=1 |𝑣𝑝 − 𝑣𝑔 | where 𝑣𝑝 and 𝑣𝑔 are predicted and
ground truth orientations, respectively.

5.2.2 Comparing with baseline model and Vi2IMU without hand joints. Fig. 11a shows the per-axis orientation
error in degrees for Vi2IMU and Ridge regression. We observe that Vi2IMU’s deep learning model achieves on
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Fig. 11. Orientation estimation performance: (a) Comparison with regression, and (b,c) performance with and w/o hand
joints

average 54.48% less error (8.57◦) compared to the ridge regression (18.83◦). This is expected because of the ability
of deep learning models to better learn the problem-specific representations compared to other models. Of the
three axes, the error is the highest for roll (IMU’s Y-axis). As we detailed in Section 3, hand joints offer the
required information to estimate the rotations along the IMU’s Y-axis (roll) as it is possible to rotate the wrist
along the Y-axis without moving the arm. Although the ridge regression model has hand joint information, unlike
Vi2IMU, it is not able to account for the impact of inaccurate hand joint estimates (missing hand joints) which
requires incorporating the knowledge from key frames in the orientation estimation for delta frames.

While comparing the deep learning models with and without hand joints, we find that for the model without
hand joints, the average increase in error in the azimuth and pitch is 13.65% (Fig. 11b). Here, we observe that the
error is relatively less in azimuth and pitch as they can be estimated using arm joint information. In contrast, the
error for roll increases considerably (34.7% increase) when Vi2IMU is trained without hand joints. This clearly
establishes the significance of hand joints. Fig. 11c shows the maximum (among three axes) orientation error for
10 gestures for Vi2IMU with and without hand joints. The gestures vary in the amount of wrist displacement
and rotations. The average and maximum decrease in error is 52.02% and 61.71%, respectively, when Vi2IMU is
trained with hand joints. The gesture with maximum decrease in error (Hurt[49]) predominantly involves wrist
rotations, leading the model with hand joints to have a better estimation of orientation.

5.2.3 Impact of untrained users. Fig. 12a shows the per-axis orientation error for orientation estimation while
the models with and without hand joints are evaluated in a leave one out fashion. Here, we train the models on 4
users and test on the remaining user. We repeat this for all the 5 users and provide the average of the obtained
results. This should give us some insight into the generalizability of the proposed models. We observe that the
deep learning model trained with hand joints has 13.04% less error on average. The difference is highest for roll

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 74. Publication date: June 2023.



74:16 • Santhalingam et al.

where the model with hand joints has an error of 17.8◦ and the model without hand joints has an error of 24.26◦
(26.6% increase in error). This further emphasizes the need for hand joint positions in estimating orientation.
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Fig. 12. Orientation estimation performance: (a) impact of untrained users and (b) impact of missing hand joints

5.2.4 Impact of missing hand joints. We investigate the robustness of the proposed deep learning model in coping
with inaccurate hand joint estimates by testing the model with different number of hand joints being available
(accurately estimated). We do this by randomly masking some percentage of the hand joints to zero in the test
data and estimating orientation with the masked hand joints (considered missing hand joints by the model).
This is done on top of the existing missing hand joints which the model already has to accommodate for in
orientation estimation. Fig. 12b shows the observed percentage increase in error along the three axes as we
increase the amount of missing hand joints. We observe that until a 50% increase in the number of missing hand
joints, the percentage increase in error is less than 25% for roll (still less than the model without hand joints) and
less than 15% for azimuth and pitch. Here, Vi2IMU’s ability to incorporate the knowledge from the key frames
(like hand shape) into the orientation estimation for frames with missing hand joints (delta frames) makes it
resilient. However, as we increase the missing hand joints beyond 50%, the percentage increase in error along the
roll increases exponentially. This is expected, as the model does not have any key frames (all the frames have
missing joints) to depend on, and the observed error in roll (24.32◦) reaches close to that of the baseline model.

5.3 Acceleration & Gyro Estimation Results
5.3.1 Comparison and error metric. We compare our multitask learning model with two other schemes. (1)
Manual computation using finite difference: The manually computed acceleration/gyro (also the approach used
in [11]) is calculated as follows: we use the predicted wrist orientation to transform the obtained 3D wrist
displacement values into IMU’s frame-of-reference. We then compute wrist acceleration as the second-order
derivative of displacement change between every subsequent sample. For the calculation of gyro, we calculate the
first order derivative of orientation change between every subsequent sample of the predicted orientation values.
(2) Vi2IMU model without hand joints: To evaluate the contributions from hand joints, we train another model
using the same training data where we do not input the 2D hand joints to the model. Here, we input orientation
predictions as predicted by the orientation estimation model trained without hand joints.

We use percentage median absolute error (PMAE) as the error measure for both acceleration and gyro evaluation.
We obtain PMAE by computing the median of the absolute difference between the predicted and ground truth
acceleration (or gyro) vectors and dividing it by the mean acceleration (or gyro) value observed in our collected
dataset. The PMAE is separately calculated for all three axes. PMAE provides insight into how the observed errors
stand compared to typically observed acceleration and gyro values during gestures.

5.3.2 Comparison withmanual computation. Figs. 13a and 13b show the comparison betweenmanual computation
using finite difference method and Vi2IMU’s proposed model with multitask. We observe a significant decrease
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Fig. 13. Vi2IMU’s multitask learning model vs. direct manual computation of acceleration and gyro.

in error for both acceleration and gyro along the three axes when manual computations are compared with
Vi2IMU trained with multitask. Comparing manual computation with Vi2IMU, we observe a decrease in error
from 1.34𝑚/𝑠2 to 0.54𝑚/𝑠2 for acceleration and from 0.55 𝑟𝑎𝑑/𝑠 to 0.39 𝑟𝑎𝑑/𝑠 for gyro when averaged over the
three axes. As stated earlier, the major reason behind this is that the manual computation does not take the hand
joint information into account for acceleration estimation. Similarly, since the manual computation does not
incorporate the knowledge of domain difference between videos and IMUs in terms of bias and noise, the error
for gyro is also considerably higher compared to that of Vi2IMU.
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Fig. 14. Vi2IMU’s model trained and tested on the same set of users vs. different sets of users.

5.3.3 Training and testing on different users. Figs. 14a and 14b show the results for Vi2IMU when trained and
tested on different set of users. Here, we train Vi2IMU on a subset of four users and test it on the remaining one.
We repeat this for a different subset of users and provide the average of the observed errors. We find that although
there is some increase in error when compared to trained and tested on the same set of users, the increase is still
not significant (2.69% and 3.03% on average for acceleration and gyro). This shows that the multitask learning
model generalizes well by learning more user-independent feature representations as originally intended. We
will further evaluate this cross-user generalization capability of Vi2IMU in Section 5.4 with in-the-wild video
evaluation.

5.3.4 Importance of hand joints in accel./gyro prediction. Figs. 15a and 15b show the comparison for two models
(with and without hand joints). For the sake of brevity, we present the sum of PMAE for all three axes for
both models and show the results for the top 10 worst performing gestures (in terms of error achieved by the
model without hand joints for both acceleration and gyro ). The maximum increase in acceleration error is
6.77% and the average increase in acceleration error across all the gestures is 4.67%. We find that 6 out of the 10
worst-performing gestures actually involve a considerably small amount of wrist displacement where correct
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Fig. 15. Impact of including hand joints on the performance of Vi2IMU for different gestures.

Table 3. Cumulative error of displacement and orientation estimation on accel. & gyro predictions.

3D arm
joint

positions /
Wrist

orientation

Percentage median
absolute error (%)

Acceleration Gyro

X Y Z X Y Z

Ground truth/
Ground truth 13.11 11.31 12.68 10.85 10.83 11.45

Predicted/
Ground truth 13.45 11.68 13 11.1 11.06 11.85

Ground truth/
Predicted 18.74 15.4 17.57 15.95 16.1 18

Predicted/
Predicted 18.85 15.68 17.74 16.1 16.06 18.15

acceleration and gyro estimation requires relying on hand joints. For example, ASL gesture Cheese [50] involves
a considerable amount of wrist rotation without displacement. Hence, the model without hand joint positions
performs significantly worse with error increasing by 10.91%.

5.3.5 Understanding error accumulation. We now try and understand how errors in orientation estimation
contribute to the error observed in acceleration and gyro estimation. In order to do this, we take the trained
model for accel./gyro prediction and test it using three variants of input data: (i) use ground truth displacement
of joints and ground truth wrist orientation as input, (ii) use predicted displacement of joints but ground truth
wrist orientation as input, and (iii) use ground truth displacement of joints but predicted wrist orientation as
input. Along with these, we use the 2D hand joint displacements extracted using OpenPose as input for all three
variants. We compare these three with our model where both displacement and orientation are predicted (i.e.,
error accumulates). We summarize the results in Table 3. We observe that when the displacement is predicted but
orientation is not, the error is similar to that of the model where both of them are ground truth. In comparison,
we see an increase in error when orientation is predicted and displacement is not, and the observed error here is
similar to that observed when both orientation and displacement are predicted. This means that the orientation

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 74. Publication date: June 2023.



Synthetic Smartwatch IMU Data Generation from In-the-wild ASL Videos • 74:19

Table 4. Classification performance for different number of MSASL gesture classes when the model is (a) purely trained
using Vi2IMU translated IMU data, (b) trained using translated IMU data with augmentation, (c) real measured IMU data

and (d) real measured IMU data along with translated augmented IMU data.

Number
of

MS-ASL
gestures

Training data
(a) Translated IMU

data without
augmentation

(b) Translated IMU
data with

augmentation

(c) Measured IMU
data

(d) Measured +
translated
IMU data

Top-1
(%)

Top-3
(%)

Top-5
(%)

Top-1
(%)

Top-3
(%)

Top-5
(%)

Top-1
(%)

Top-3
(%)

Top-5
(%)

Top-1
(%)

Top-3
(%)

Top-5
(%)

50 84.1 96.8 98.8 90.7 100 100 91.6 100 100 100 100 100
60 74.7 93.2 98.1 84.2 99.9 100 89.6 100 100 99.7 100 100
70 66.6 86.2 93.4 77.3 98.2 100 86 100 100 93.1 100 100

estimation module introduces more errors in acceleration and gyro estimation compared to displacement. This
can be explained by the fact that the displacement estimation module uses existing pose estimation approaches
that have been researched upon for many years now and are expected to perform better than the fine-grained
wrist orientation estimation problem which is relatively less explored.

5.4 Translating in-the-wild Videos
Our final evaluation is to leverage Vi2IMU to translate videos to IMU and train an IMU-based ML model without
the need for any actual IMU data for training. As mentioned earlier, we use an in-the-wild ASL video dataset
referred to as MS-ASL [7] and arbitrarily pick 70 ASL gestures of varying characteristics. Next, we translate the
videos corresponding to the chosen gestures using Vi2IMU. We then use the translated IMU data to train an ASL
gesture recognition model without any IMU data collected specifically for training. We then collect test samples
from wrist IMU for the same set of gestures (25 test instances for each of the 70 gestures). The model trained
using the translated IMU data is then evaluated using the test IMU data.

5.4.1 Gesture classification model and metrics. We use the state-of-the-art deep learning model proposed in
[1] for smart watch-based ASL gesture recognition as the machine learning model. The model is comprised of
three bi-directional LSTM layers, which are followed by a fully connected linear layer and a softmax layer for
classification. For evaluating the trained machine learning model, we use average accuracy as the metric [51].
In addition to the Top-1 accuracy, we also provide Top-3 and Top-5 accuracies. For Top-k accuracy, a sample is
considered correctly classified if the label corresponding to the sample appears in one of the top k predictions.

5.4.2 Varying number of gestures. We start by understanding the Vi2IMU’s ability to scale for a diverse set of
gestures. Since the IMU data translated from videos can slightly differ from the ones obtained from real IMUs,
domain adaptation between the source domain (videos) and the target domain (IMUs) is necessary. Existing
works [11, 17] have addressed this through distribution matching, DTW-based stretching, and data augmentation
techniques. To cope with such domain differences, we propose a simple augmentation technique in which we
incorporate the attributes from the measured IMU data by scaling the translated data to the same range as the
measured data. As most of the in-the-wild videos we obtained are educational videos, the gestures are often
performed slowly to communicate the proper movement information. This can result in lower acceleration
and gyro values in the translated data. Addressing this issue can minimize domain differences and improve the
performance of the translated data.
In our evaluation, we consider three training strategies: (i) translated data without any augmentation, (ii)

translated data with augmentation from 4 measured IMU samples per gesture, and (iii) a combination of measured
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Fig. 16. Comparing translated and measured acceleration and gyro for an ASL gesture.

IMU data and translated data with augmentation from 2 measured samples. We separately evaluate the impact of
the proposed data augmentation technique later in Section 5.4.8 to understand the benefits gained from increasing
the number of measured samples used for augmentation and the importance of user and gesture specific attributes
in augmentation.

Table 4 shows the performance of the trained model for a different number of gestures. Comparing the models
with and without augmentation of translated data, we find that there is on average 16.93% increase in accuracy
when trained with augmentation. We note that explicitly addressing domain differences is important to improve
the performance of the translated data. Our approach for domain adaptation is simple (only requires scaling)
and can still provide a significant improvement in performance with just four measured samples per gesture.
Additionally, while the model trained using the translated data achieves lower Top-1 accuracy, it does achieve
better performance in terms of Top-3 and Top-5 accuracies. Of the three training strategies, the model trained
with a combination of measured and translated IMU data significantly outperforms the other two models, and
the model trained entirely with the measured IMU data. On average, there is an 8.53% increase in accuracy when
the model is trained using a combination of measured and translated IMU data. The reasons are twofold: (1) the
translated data incorporates information from a diverse set of users and (2) it increases the amount of training
data, directly addressing the data scarcity problem.
Fig. 16 shows the translated acceleration and gyro values along with the corresponding measured and gyro

values for ASL gesture Hot. We find that the pattern of translated and measured accelerometer and gyro data
have considerable visual similarities. More such comparisons are available at our anonymous data repo [52].

5.4.3 Performance for different subjects. Figs. 17a shows the Top-1, Top-3, and Top-5 accuracies for the 5 subjects
for 50 gestures. The observed standard deviations from the average Top-1, Top-3 and Top-5 accuracies for 50
classes are 7.70%, 4.72%, and 3.57% respectively. The reason behind this observed difference across subjects
for Top-1 accuracy is that the gestures performed by Subject-5 were relatively different from the actual ASL
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gestures (from which the data was translated) for a number of gestures. This is also evident in the Top-3 and
Top-5 accuracies for Subject-5 which are relatively more consistent to that of the other subjects.

5.4.4 Performance for different gesture types. Here, we use the phonological properties of ASL that we explained
earlier in Fig. 10. Fig. 17b shows the results for different sets of gestures grouped by their phonological properties.
We note that the set of gestures without much wrist movement (the categories with wrist twist and w/o wrist
movement) offer relatively good performance (Top-3 accuracy of 88% and 89.06% respectively) when compared
to gestures with considerable wrist movement (curved movement with Top-3 accuracy of 87.6%). As Vi2IMU
incorporates hand joints information in both orientation and acceleration estimation, there is no clear observable
difference in translations for gestures with and without wrist movements. Compared to other gesture types,
gestures with straight movement and circular movement have lower accuracies.
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Sensors considered 
for gesture recognition

Top-1 accuracy 
(%)
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(%)

Top-5 accuracy 
(%)

Accelerometer 48.8 74.6 84.0
Gyro 58.6 84.9 92.4

Accelerometer and gyro 84.1 96.8 98.8

(c) Different predicted IMU sensor data in classification

Fig. 17. Comparing performance of Vi2IMU’s translated data for gesture recognition.

There are two reasons for this low performance. First, MS-ASL dataset is comprised of multiple paired words
like father/mother, grandfather/grandmother, sister/brother, etc. for which the gestures have similar hand shape
and movement except for the location. For example, the only difference between the gestures sister/brother is
that while brother[28] is performed near the forehead sister [53] is performed near the chin. There are 10 such
pairs among the gestures for which the wrist movement is straight causing significant confusion which results in
low accuracy. The other reason is that some gestures like slow [54] and please [55] (gesture with circular wrist
movement) are performed slowly which translates into low acceleration/gyro values. The low acceleration/gyro
values make it difficult for the model to differentiate between the different gestures.

5.4.5 Contributions of translated acceleration and gyro in classification. We study the impact of the translated
acceleration and gyro values on the observed classification results by training two separate models: one with
the acceleration data and the other with the gyro data for classifying 50 gestures. Fig. 17c shows the results. We
find that the impact of the predicted gyro values is relatively high. There is a 9.8% increase in Top-1 accuracy
for the model trained only with the translated gyro values when compared with the model trained only with
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the translated acceleration values. The rotational information obtained from the gyro provides the orientation
change that is crucial in detecting wrist rotations. As the MS-ASL dataset includes several gestures that involve
wrist twists without any wrist movement, the model trained only with translated gyro performs relatively better
than the one trained with translated acceleration alone.

5.4.6 Performance under diverse settings. To understand the ability of the synthesized data to scale for diverse
settings and users, we collect an additional IMU data set with four subjects. The subjects perform 50 gestures,
each for 10 instances per gesture while assuming two body postures, sitting and standing. The dataset comprises
three males and a female, aged between 26-33, with heights between 160-182 cm, and weights between 58-75
Kg. The users vary in their ASL proficiency ranging from no experience to non-native beginner’s experience.
Additionally, we do not impose any constraints on how the gesture is performed and encourage a casual posture
to account for everyday usage. The collection time for each user was approximately 6 hours (excluding the time
for breaks, instructions, etc.) with an approximate total time of 24 hours, spread over 6 days.

We test the collected data on the model trained using translated IMU data from MS-ASL dataset. Fig. 18a shows
the results for different subjects in the two settings. The average accuracy for sitting and standing is 90.06% and
85.67% respectively. The observed performance reflects the benefit of translating from in-the-wild diverse videos
with a large number of users performing gestures in different postures (approximately, 58% standing and 42%
sitting), speeds, etc., and the ability of the translated data to scale for diverse unseen subjects and settings. We
also find that on average there is a slight increase in accuracy (4.3%) when the subjects perform the gesture sitting
than standing. As standing is a bit strenuous compared to sitting, there is occasional involuntary limb movements,
which result in this difference in accuracy between the two postures. These involuntary limb movements are
reflected as noise in the collected IMU data and result in this drop in accuracy.

 60

 80

Subject 6

Subject 7

Subject 8

Subject 9

A
v
e

ra
g

e
 a

c
c
u

ra
c
y
 (

%
)

Sitting

Standing

(a) Performance under diverse settings

 15

 30

 45

 60

 75

 90

10 gestures

20 gestures

30 gestures

40 gestures

50 gestures

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

%
)

Let there be IMU
Zero-Net
Vi2IMU

(b) Comparison with existing works
Fig. 18. Vi2IMU’s performance (a) under diverse settings and (b) compared to existing works

5.4.7 Comparison with existing works. We compare the performance of Vi2IMU with two existing works, "Let
there be IMU" [14] and "Zero-Net" [11]. "Let there be IMU", proposed for human-activity recognition, uses a
generative approach comprised of a multi-level CNN (convolutional neural network) architecture that takes as
input a sequence of poses and directly regresses the corresponding IMU data. Instead of predicting the 3-axis
acceleration and gyro data, the proposed approach predicts the norm of the acceleration and gyro data. We
implement the proposed multi-level CNN architecture and use the upper-body joint pose sequences as input
and the norms of acceleration, and gyro as output to train the model. "Zero-Net", which takes a trajectory-based
approach, estimates the 3-D position of the finger joint corresponding to the ring position and computes the
acceleration using finite differences. In place of the gyro data, their approach is to use the angle between the Y-axis

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 74. Publication date: June 2023.



Synthetic Smartwatch IMU Data Generation from In-the-wild ASL Videos • 74:23

of the IMU and its projection on the X-Z plane of the TCN (torso coordinate system). To obtain this angle from
the videos, they approximate the Y-axis of the IMU with the line joining two finger joints (metacarpophalangeal
(MCP) and proximal interphalangeal (PIP) joints). In place of the 3D finger joint, we use the 3D wrist joint as an
approximation for the smartwatch position from the videos and use finite differences to compute acceleration.
For estimating the angle we use the line joining the wrist and elbow joints to approximate the Y-axis of the IMU
and use its projection on the X-Z plane of the TCN.

We translate the videos from the MS-ASL dataset for 50 gesture classes using the implementations of "Let there
be IMU", "Zero-Net", and Vi2IMU and use the translated data to train a model for ASL recognition. We repeat the
training for a varying number of gestures from 10 to 50 and evaluate the trained model on the measured IMU
data from five different subjects. Fig. 18b shows the results for the three approaches with a varying number of
gestures. We find that compared to the generative approach ("Let there be IMU"), the trajectory-based approaches
perform better when scaled for a large number of gestures. While this reinforces the importance of a systematic
trajectory-based approach, we also acknowledge that the approach proposed in "Let there be IMU" was evaluated
on ten human activities and depends on multi-sensor input from different joints for its prediction. It is expected
that the method cannot scale for a large number of gestures with only the sensor information from a single joint.
In comparing Vi2IMU and "Zero-Net", we find that as the number of gesture classes increases the performance
gap also increases. On average, there is an 11.67% increase in accuracy when the model is trained using the
data translated by Vi2IMU while scaling the number of gestures above twenty. As the videos we translate from
are diverse, pose estimation on them often performs poorly, and manual computation of acceleration leads
to considerable errors as we have highlighted in Fig. 13a. While "Zero-Net" was shown to perform well for a
single source of high-quality videos, only depending on such videos reduces the number of videos available for
translation. Additionally, gyro data is crucial for differentiating between different ASL gestures that have similar
movement information but different orientations. As Vi2IMU can estimate 3-axis gyro data and also incorporate
the information of missing joints in its models, it can better scale for a large number of gestures in comparison
with "Zero-Net".

5.4.8 Understanding the impact of data augmentation. We study the benefits of data augmentation on the
performance of the translated data through (i) gesture-specific augmentation and (ii) subject-specific augmentation.
For both augmentations, we incorporate the attributes from the measured IMU data into the translated IMU data
by scaling the translated data to the same range as the measured data. We propose this augmentation based on two
observations. First, most of the in-the-wild ASL videos are educational videos, where the user performs the ASL
gesture at lower speeds to communicate the proper hand movement and shape. This results in lower acceleration
and gyro values in the translated data. Next, the translated data does not capture some of the subject-specific
attributes which could hinder the performance of specific subjects as seen in Fig. 17a. Thus, we hypothesize that
correcting for the gesture speed and incorporating subject-specific attributes could improve performance. For
correcting the gesture speed, we perform gesture-specific augmentation, where we pick an arbitrary gesture
sample and use its measured range to scale each of the gesture samples in the translated data. We repeat this for
all the gestures. We increase the number of measured gesture samples used for augmentation and repeat the
mentioned steps for each of the measured gesture samples. The number of translated samples for training linearly
increases with the number of measured samples used for augmentation. We train separate models for the different
number of gesture sample augmentations and evaluate their performance. For subject-specific augmentation,
instead of picking arbitrary gesture samples we pick gesture samples from a single subject for augmentation and
train separate models for different subjects.
Fig. 19a shows the results for gesture-specific augmentation for a different number of ASL classes in the

MSASL dataset. For all the classes, there is a significant increase in performance with data augmentation. The
average increase in accuracy is 9.28% as we move from no augmentation to augmentation with four samples.
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Fig. 19. Impact of data augmentation on the performance of Vi2IMU’s translated data.

For 50 gestures, the model trained with four sample augmentation provides comparable accuracy (90.7%) to the
model trained with measured IMU data. As we increase the translated samples by augmentation, the average
accuracy gap between the translated and measured data reduces from 14.71% to 5.42%. We note that at least two
gesture samples are needed for an observable difference in performance for all the gesture classes. In contrast to
gesture-specific augmentation, in subject-specific augmentation, there is a significant difference in accuracy gain
for the different number of samples used for augmentation. As seen in Fig. 19b, for subjects one, two, and five, just
one or two samples were sufficient for an observable increase in accuracy. This confirms that the subject-specific
attributes were not captured in the translated data and incorporating them leads to substantial improvement. The
average increase in accuracy is 14.4% with a maximum increase in accuracy of 18.68% for Subject-5. Additionally,
with subject-specific augmentation, the average accuracy for 50 classes is 93.26% which is better than the accuracy
obtained from the measured data (91.6%).

5.4.9 Practical use cases for translated IMU data. We study the benefits of the translated IMU data under two
scenarios: (1) using transfer learning, and (2) using multi-modal learning. The goal of these studies is to exhibit
the potential of the translated IMU data in improving the research and development of IMU-based sensing and
automatic ASL recognition.
(1) Transfer learning with translated IMU data. Research on transfer learning [56, 57] has shown that
machine learning tasks with scarce training data for one domain (target domain), can benefit from pretraining
with large data collected for a different domain (source domain). For example, the source domain on which
pretraining happens could be pre-existing data collected for a set of subjects, and the target domain could be a
new subject. Here, we explore if such benefits could be gained from our translated data for training with few
measured samples. For this, we use two models: one is pretrained with the translated IMU data on 50 gestures,
and another is not pretrained. We train both these models from scratch with a different number of measured IMU
data samples from a single user and test it on gesture samples from four different users. The rationale behind
this training/testing scenario is to highlight the importance of the translated data in better generalization with
limited measured training data. We emphasize that the translated data we use for pretraining is not augmented
with the characteristics of the measured data, and any benefits gained from the translated should be attributed
only to the proposed system.

Fig. 20a shows the average accuracy for the two models (with pretraining and w/o pretraining from translated
data) trained with 5 and 10 measured IMU samples for different epochs during the training. The model with
pretraining outperforms the model without pretraining along two dimensions. First, the model with pretraining
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yields maximum accuracy within 50 epochs of training which could translate to a reduction in the research and
development cycle. Second, the model with pretraining yields maximum accuracy with a limited number of
training samples. For example, there is a 15.9% difference in accuracy between the model trained with pretraining
(97.7%) and the model without pretraining (81.8%) when trained with only five samples per gesture. This ability
to better generalize from a few training samples is extremely important to tackle the data availability challenges.
Additionally, the model with pretraining outperforms the model without pretraining in both scenarios further
emphasizing the benefits of Vi2IMU and the translated IMU data.
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Fig. 20. Practical use cases for Vi2IMU’s translated data.

(2) Multi-modal ASL recognition with synthesized IMU data. ASL is comprised of signs captured through
hand and body movements, facial expressions, and mouthing. To accommodate for such complexity, multi-modal
systems comprising multiple sensors like IMU, EMGs, cameras, etc. have been studied [58–60]. Such multi-modal
systems can address the limitations of single-sensor solutions as each sensor captures a different representation of
the same gesture and can compensate for the shortcoming of another. Here, we demonstrate one such multi-modal
system using cameras and IMUs. Such a system can be used in a home environment where an ASL speaker
wearing a smartwatch is interacting with a smart device or in an office environment where an ASL speaker is
on a video conference while wearing a smartwatch. While existing works have studied standalone solutions
with cameras [3, 4] and IMUs [1], they could complement each other to overcome their limitations. For example,
cameras exhibit motion blurs and self-occlusions (like the left hand occluding the right) which result in missing
joint information in pose estimates (as discussed in Section. 3 and also shown by existing works [12, 61]). IMUs,
while capable of capturing fine-grained arm and hand movement, being local to the joint, do not capture complete
body movements, facial expressions, and mouthing. A multi-modal system comprising cameras and IMUs can
complement each other and enable robust ASL recognition.

We now consider a multi-modal camera and IMU ASL recognition system and demonstrate how our synthetic
IMU data can augment camera data. For camera data, we use the upper body pose comprised of head, shoulder,
elbow, and wrist joints from both hands similar to existing works [62, 63] for training and testing, and for the
IMUs, we use the translated IMU data for training and the measured IMU data for testing. We train two models,
one with only pose data (Pose) and the other with both pose and the translated IMU data (Pose + IMU). Fig. 20b
shows the difference in accuracy between Pose + IMU and Pose models for different numbers of gestures. We
find that the model trained with both pose data and IMU data can scale for a large number of gestures with an
accuracy of 98.85% and 90.5% for 60 and 70 gestures, respectively. The average difference in accuracy between the
two models is 7.24%. As explained in Section 3, due to varying factors like poor lighting, camera frame rate, etc.
there is a considerable motion blur in the captured videos. IMUs can compensate for this motion blur and thus
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offer better performance than only camera-based solutions. While we have demonstrated this with cameras, the
translated data can also aid rapid prototyping of other multi-modal solutions such as RF-IMU, LIDAR-IMU, etc.

5.4.10 Feature engineering with translated data. Deep learning models learn task-specific feature representations,
while non-deep learning models like random forests (RF), and support vector machines (SVM) can benefit from
explicit feature engineering. Here, we study the difference between features obtained through feature engineering
and deep learning for the translated and measured data. For this, we use high-level features used in existing
works [34, 37] like kurtosis, skew, mean, absolute area, FFT coefficients, etc. We extract 29 features and train two
machine learning models: random forests (RF) and support vector machines (SVM) with the extracted features
and compare them with a deep learning model trained using the same data. We train models separately for the
measured data and translated data (with augmentation).

 50

 65

 80

30 G
estures

40 G
estures

50 G
esturesA

v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

%
)

RF measured

RF translated

SVM measured

SVM translated

DL measured

DL translated

(a) Feature engineering with translated data

 0

 3.5

 7

 10.5

Top-1
Top-3

Top-5

S
e
n
te

n
c
e
 e

rr
o
r 

ra
te

 (
%

)

(b) Sentence-level ASL recognition

Fig. 21. Performance for (a) different machine learning models: Random forests (RF), Support vector machines (SVM), and
Deep learning (DL), and (b) Sentence-level ASL recognition using Top-K accuracy and a language model.

Fig. 21a shows the results for the non-deep learning and deep learning models trained with features from
the translated and measured data. The average difference in accuracy between the deep learning and non-deep-
learning models for 30, 40, and 50 gesture classes is 1.67%, 6.05%, and 13.1%, respectively. This difference can be
attributed to the well-understood shortcomings of hand-engineering features used in non-deep learning models
compared to the features learned in the deep learning models. We also find that the average difference in accuracy
for the models trained with the measured and translated data, for the non-deep learning models and deep learning
model is 1.6% and 0.7% respectively. This shows that the application of our translated data is not necessarily
limited to the deep learning models and it can achieve a comparable (to real, measured data) performance even
using non-deep learning models.

5.4.11 Sentence-level ASL recognition. We find from Table 4 that the Top-3 and Top-5 accuracies for the translated
data are reasonably high. Here, we answer the following question: can the Top-3 and Top-5 accuracies translate
into better performance in sentence-level ASL recognition? For this, we create thirty sentences such as "time
to work", "I have no college", etc., by combining the seventy words in our vocabulary. Next, we pick samples
corresponding to these words and combine the predictions for Top-k accuracy as follows: for Top-1, if all the
words were predicted correctly, we count it as a correct prediction. For Top-3 and Top-5, we first create sentences
by considering all possible combinations of the words in the predictions. Next, we use a language model based on
[64] to compute the probabilities of each created sentence and pick the sentence with the maximum probability
as the prediction. The language model [64] provides the probability for different English sentences computed
based on their frequency of occurrence in the Wikipedia text. If the sentence returned by the language model
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matches the desired sentence, we treat it as a correct prediction. For example, if the top-3 predictions for two
words are "black, pencil, and buy", and "finish, sunday, and fish" respectively, the language model returns the
most frequently used combination of the nine possible combinations, which in this case is "buy fish". This way,
a language model by incorporating conditional probabilities of word co-occurrences can compensate for the
shortcomings of the word classification model. We use sentence error rate (SER) as the metric which is defined as
the ratio between incorrect predictions to the total number of samples. Fig. 21b shows the results. We find that
the Top-3 and Top-5 predictions when combined with the language model have lower SER compared to Top-1
predictions. The difference is 6.35% for Top-3 and 9.29% for Top-5. Thus, by incorporating language models, we
can take advantage of high Top-3 and Top-5 accuracies for sentence-level ASL recognition.

6 RELATED WORK

Sensing using IMUs. Because of their general availability on smartphones and wearables, IMUs have been used
in a variety of sensing applications like human activity recognition [65–68], gesture recognition [69, 70], sports
analytics [71, 72], etc. They have also been used along with other mobile sensors (like microphones, GPS, etc.) for
health applications [73, 74], user experience tracking [75], augmented reality [76], and more. In [1, 2], authors
use IMUs in the smartwatch to perform both word and sentence level American sign language recognition. In
[33], authors use wrist and finger worn IMUs to classify 37 gestures involving hand, finger and arm movements.
In the above mentioned works, the authors establish the feasibility of using IMU sensors for a particular task
by collecting data and evaluating the performance. Our work shows that the development of such schemes can
considerably benefit from our proposed translation framework to create synthetic IMU data for training without
laborious data collection. IMUs have also been used in arm tracking [77] and localization using dead reckoning
[78–80]. Both arm tracking and dead reckoning solve the inverse problem where displacement is calculated
from acceleration. On the other hand, we use displacement to calculate the acceleration while combining it with
orientation.
Computer vision. Our work utilizes 2D and 3D pose estimation models developed in the field of computer
vision. 2D and 3D pose estimation has been extensively studied with multiple proposed approaches [81–87].
In [88], authors propose a novel convolutional neural network (CNN) architecture that utilizes subsequent
steps of pooling (downsampling) and upsampling that has shown to outperform existing approaches. In [23]
authors propose a bottom-up approach where they first identify different body parts (using predictors) and use
bipartite matching to estimate poses for multiple persons from a single image. In [89] authors decompose 3D pose
estimation as a problem of 2D pose estimation and match the depth from a library of 3D poses to estimate the
final pose. In [90] authors estimate 3D pose by fusing the information from videos and IMU sensors. We note that
while our work builds on existing pose estimation frameworks, the problems of wrist orientation estimation and
acceleration calculation directly from videos require addressing many challenges that are previously unaddressed.
Generation, transfer, and similar approaches. Multiple generative methods [14, 15, 91] have been proposed
for generating IMU data. In [18] authors propose a deep learning based regression model to generate IMU data
from 2D poses for human activity recognition. Directly regressing IMU data can lead to generalization issues and
cannot provide a clear understanding of the model’s shortcomings. In contrast, our modular approach enables
the study of individual modules and any improvement of the underlying modules (studied separately) will also
improve the entire framework. Other generative approaches have also been proposed to generate RF data [92, 93]
directly from videos, simulate IMU data from motion captures [94, 95]. Unlike RF where data is dependent
on the environment, IMU’s data are local to the body joint and require careful modeling of displacement and
wrist orientation. In contrast to generative approaches, trajectory based methods [13, 16, 19] compute IMU’s
acceleration by tracking the joint positions in the video. In [12, 17] authors propose a pipeline for IMU data
translation for human activity recognition (HAR). Our focus is not on large, multi-joint movements (like human
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activities) but is on fine-grained hand gestures which require attention to the impact of hand joints in orientation
and acceleration/gyro estimation as discussed earlier. While authors in [11] have presented a pipeline for finger-
worn IMU data synthesis from videos for gesture recognition, they do not consider videos of varying diversity
in terms of resolution, motion blur, lighting condition, etc. Also, the proposed approach can only reconstruct
one orientation axis. Other approaches such as projecting IMUs and videos to a common projected semantic
space[96] for zero-shot activity recognition and cross-modal domain adaptation [97] for Doppler based activity
recognition have also been proposed. In contrast to the proposed techniques which are designed for human
activity recognition, our objective is to reconstruct realistic IMU data that can be used for any task in addition to
gesture recognition.

7 DISCUSSION
We now discuss the various aspsects of Vi2IMU that can be improved through further investigation:
Better pose estimation approaches. OpenPose [23] is known to perform poorly in presence of motion blur
[12, 61] which leads to missing pose estimates for different joints. While our orientation estimation module
tackles this challenge, improvements in 2D pose estimation approaches can lead to better performance of all
modules of Vi2IMU. Also, since we depend on existing 2D to 3D pose estimation approaches, improvements in
3D pose estimation can also improve the performance of Vi2IMU. Errors in 3D pose estimation often translate
into inaccurate acceleration values. Accurate pose estimation can also enable Vi2IMU to better model the relation
between the 3D displacement values and the acceleration values.
Improving orientation and acceleration/gyro estimation. The estimated orientation values affect the
performance of the acceleration/gyro estimation module. Additionally, the absence of 3D hand joint positions
impacts both the orientation and acceleration/gyro estimation modules as the models need to learn the relation
between 2D and 3D inputs and the predicted output. As the arm and hand joints are presented in two different
metrics, one in pixels and one in meters, the orientation and acceleration/gyro estimation modules have to either
convert inputs in one metric to another or learn to project them to a common representational space where they
can be modeled together. Accurately estimating 3D hand joint positions and incorporating them are open areas
of investigation and any advancements in solving the problems can improve the performance of both orientation
and acceleration/gyro estimation modules.
Improvement for specific gesture types. While Vi2IMU offers good performance for different types of
gestures, gestures that predominantly depend on accurate depth estimates pose a significant challenge. For
example, in ASL words like “father” and “mother”, the only observed displacement is along the Z-axis of the
camera. However, as the observed displacements in the videos are relatively low, they translate into lower depth
estimates and low acceleration values. We also note that in our current training data, the number of samples with
lower displacement values is relatively less compared to higher displacement samples. This is further evident
from the improvements we gain through our proposed augmentation technique. We believe that by incorporating
better depth estimation approaches and better representation of short displacement samples in our training data,
performance on gestures that heavily depend on accurate depth estimates could be improved.
Curating in-the-wild videos. While Vi2IMU benefits from a large number of in-the-wild videos, such videos
often pose challenges in terms of their curation before incorporating them into our pipeline. For example, there
exists a varying number of videos for different ASL signs on the web which could result in a data imbalance
problem. This requires exerting some effort to compensate for this by going over YouTube videos, segmenting
the videos into gesture instances, and labeling them with correct labels. In the future, such efforts can be avoided
by automating the pipeline for curating videos (specifically, for platforms like YouTube) using web scrapping,
segmentation, annotation, and labeling.
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Increasing the translated data. We note that our proposed data augmentation could be extended with existing
data augmentation techniques which can directly translate into performance gains. While we have utilized a
large public dataset for translation, the number of translated instances can also be increased by adding more
videos from YouTube to the pool of available videos. As the deep learning models are known to benefit from
more data, increasing the number of translated instances will yield better performance.
Impact of user activity. The translated data is robust to different user postures like standing and sitting and
involuntary limb movements. However, there are situations where a user might want to interact with an ASL
recognition system, like a home assistant, while being in motion such as walking. In such cases, the resultant
IMU data will contain signal representations for both walking and gestures. One way to address this challenge
would be to take advantage of the fact that gestures and walking are performed at different frequencies, and we
could do a frequency domain analysis to separate the signal components of the gesture from other user activity.
Exploring the impact of such signal processing on the performance of the translated data requires further inquiry.
Additionally, we could also study methods to incorporate such additional activity-related information into the
translated data. For example, we have currently proposed an augmentation technique that converts the translated
data to incorporate the amplitude characteristics from the measured IMU data. Similarly, approaches could be
devised to incorporate additional frequency information like that of walking into the translated data.
Impact of non-manual markers. In ASL, non-manual markers such as torso shifts and head movements can
be interleaved with manual markers like hand and arm gestures. When this happens, the measured IMU data
will have signal components of both hand and body movements. In its current version, Vi2IMU does not take
into account the acceleration due to body movements. For this, we can track other joints that are involved in
non-manual markers like head and torso, and model their contribution to the measured acceleration and gyro
values in the smartwatch. We can next integrate the contributions from different joints to estimate the composite
acceleration and gyro values as observed by IMUs. Incorporating the impact of non-manual markers can make
Vi2IMU more practically useful for expressive ASL recognition.
Sentence level ASL data synthesis. While word-level ASL data synthesis can enable various applications in
HCI, continuous sentence-level synthesis is needed for applications like ASL-to-text transcribing, ASL-to-speech
synthesis, and many more. There are existing ASL sentence datasets that we could use for sentence-level ASL data
synthesis. In addition, public video platforms such as YouTube have several videos of ASL interpreters translating
a speech or hearing along with the corresponding annotations. Given that sentence-level ASL recognition in
itself is an active area of research, studying and extending Vi2IMU for sentence-level IMU data synthesis is a
challenging and important research direction.
Extending Vi2IMU beyond ASL. Although Vi2IMU is proposed with a focus on in-the-wild ASL translation,
the proposed framework can be directly adapted for synthesizing other hand gesture data. This could be used
for applications like continuous arm and hand tracking for virtual reality, telerehabilitation, human-computer
interaction (HCI), and many more. In contrast to gesture recognition, arm and hand joint tracking require
integration over the synthesized acceleration and gyro data which is challenging as it leads to error accumulation
over time. Accurate synthesis of IMU data is necessary to reduce the error accumulation over time. Extensions
to the framework that account for such application-specific challenges could lead to better data synthesis.
For example, during the acceleration and gyro synthesis, including loss values to indicate the efficacy of the
synthesized data in arm and hand tracking could lead to better synthesis.

The proposed framework can be extended to applications that involve multi-body sensors like human activity
recognition and human pose reconstruction. While existing works [11, 16] have shown the benefits of synthetic
data in these problems, incorporating fine-grained synthetic IMU data that accounts for the impact of hand
joints could complement the existing approaches and improve their performance. An important question to
answer in these explorations is the difference between the measured IMU data for gestures and activities. A deep
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understanding of this difference can inform changes to the model that account for the difference in movements
between human activities and gestures. Specifically, as activities could vary in intensity and speed compared
to the gestures, methods to incorporate this information in acceleration/gyro estimation models are needed.
Additionally, with multi-body sensors, one body part movement can impact the IMU values observed in sensors at
other body parts. Incorporating these indirect impacts into acceleration/gyro estimation is needed for an accurate
IMU data synthesis.

8 CONCLUSIONS
Our proposed system Vi2IMU attempts to solve a challenging problem of video to IMU translation for ASL
gestures. Vi2IMU is built on the insight that orientation and acceleration estimations are dependent on hand
joint positions and it is necessary to carefully account them to produce realistic, synthetic IMU data from ASL
videos. Our model is shown to be robust to missing hand joints due to the development of our key-delta frame
based learning models. Using an in-the-wild ASL dataset and our own collected data, we trained and evaluated
the models to show that our translation can be accurate and useful, especially in the ASL recognition problem.
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APPENDIX A
As part of Methodological Transparency & Reproducibility Appendix (META), we have made our translated IMU
data (plots and raw acceleration and gyro data) from MSASL videos for 70 gestures along with corresponding
measured IMU data available anonymously at https://github.com/vi2imu/Vi2IMU.
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